5.5 Multiple moving average

In the case of applying two times,

$$g_{i} = \sum_{m} w_{m} f_{i-m}$$

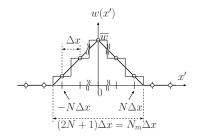
$$h_{i} = \sum_{m'} w_{m'} g_{i-m'}$$

$$(g_{i-m'} = \sum_{m} w_{m} f_{i-m'-m})$$

$$= \sum_{m'=-N}^{N} \sum_{m=-N}^{N} w_{m'} w_{m} f_{i-m'-m}$$

When
$$N_m = 3(N = 1), w_m = w'_m = 1/3$$

$$g_i = \frac{f_{i-2} + 2f_{i-1} + 3f_{i-1} + 2f_{i+1} + f_{i+2}}{9}$$

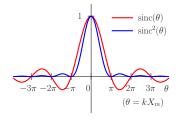


Applying multiple moving average is equivalent to moving average with which central weight is larger than neighboring points.

Spectral Gain of Multiple Moving Average

In the case of two times,

$$g(x) = \int_{-\infty}^{\infty} w(x')f(x - x') dx' \quad \to \quad G(k) = W(k)F(k)$$
$$h(x) = \int_{-\infty}^{\infty} w(x')g(x - x') dx' \quad \to \quad H(k) = W(k)G(k)$$
$$= W^{2}(k)F(k)$$



- Further reduction of higher frequency components is applied.
- No spurious resolution.

5.6 Higher order Moving average (Savitzky-Golay filter)

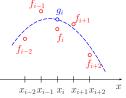
For each i,

• Represent the smoothed function $g_i(x_j)$ by a power series expansion. $(i \in \{i - N, \dots, i + N\})$

(In the case of second order expansion,)

$$g_i(x_j) = a_i(x_j - x_i)^2 + b_i(x_j - x_i) + c_i$$

= $a_i \Delta x_{j,i}^2 + b_i \Delta x_{j,i} + c_i$



- Using by the least square method, determine the parameters a_i , b_i , and c_i which are the parameters of the fitting function $g_i(x_j)$.
- The moving average at the point *i* corresponds to the value of the fitting function at the $x_j = x_i$; i.e $g_i(x_i) = c_i$.

Least square fitting to the parabolic function

$$\begin{split} \frac{\text{Fitting function}}{g_j = a\Delta x_j^2 + b\Delta x_j + c} & (\text{omit } i) \\ \hline \underline{\text{Minimize Average of square residual, } E:} \\ E(a, b, c) &= \frac{1}{N_m} \sum_{j=i-N}^{i+N} (g_j - f_j)^2 \equiv \overline{(g_j - f_j)^2} \\ \text{minimize } E(a, b, c) &\iff \frac{\partial E}{\partial \xi} = 0 \quad (\xi \in \{a, b, c\}) \\ & \left(\begin{array}{c} \frac{\partial E}{\partial \xi} = \frac{\partial}{\partial \xi} \overline{(g_j(\xi) - f_j)^2} = 2\overline{(g_j(\xi) - f_j)} \frac{\partial g_j(\xi)}{\partial \xi} \\ \frac{\partial g_j}{\partial a} = \Delta x_j^2, \ \frac{\partial g_j}{\partial b} = \Delta x_j, \ \frac{\partial g_j}{\partial c} = 1 \end{array} \right) \\ & \left(\begin{array}{c} \overline{\Delta x_j^4} & \overline{\Delta x_j^3} \\ \overline{\Delta x_j^2} & \overline{\Delta x_j} \\ \overline{\Delta x_j^2} & \overline{\Delta x_j} & 1 \end{array} \right) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \left(\begin{array}{c} \overline{f_j \Delta x_j^2} \\ \overline{f_j \Delta x_j} \\ \overline{f_j} \end{array} \right) \end{split} \end{split}$$

Least square fitting to the power series

Fitting function $\widetilde{f}(x; \boldsymbol{a}) = \sum^{N_l} a_l x^l,$ $\boldsymbol{a} = (a_0, a_1, \cdots, a_{N_l})$ Sampling points (known) $(x_i, f_i), i \in \{1, \cdots, N\}$ Minimize Average of square residual, E $E(\boldsymbol{a}) = \frac{1}{N_i} \sum_{i=1}^{N_i} (\widetilde{f}(x_i; \boldsymbol{a}) - f_i)^2$ $\equiv \overline{(\widetilde{f}(x_i; \boldsymbol{a}) - f_i)^2}$ minimize $E(\boldsymbol{a}) \iff \frac{\partial E}{\partial a_i} = 0$

$$\begin{pmatrix} \frac{\partial E}{\partial a_l} = \frac{\partial}{\partial a_l} \overline{(\tilde{f}_i - f_i)^2} = 2\overline{(\tilde{f}_i - f_i)} \frac{\partial \tilde{f}_i}{\partial a_l} \\ = 2\left(\overline{\tilde{f}_i x_i^l} - \overline{f_i x_i^l}\right) = 0 \quad \left(\because \frac{\partial \tilde{f}_i}{\partial a_l} = x^l\right) \end{pmatrix}$$
$$\therefore \qquad \sum_{l=0}^{N_l} \overline{x_i^{l+m}} a_l = \overline{f_i x_i^m} \\ \begin{pmatrix} \overline{x^0} & \overline{x^1} & \cdots & \overline{x^{N_l}} \\ \overline{x^1} & \overline{x^2} & \cdots & \overline{x^{N_{l+1}}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{x^{N_l}} & \overline{x^{N_{l+1}}} & \cdots & \overline{x^{N_{2l}}} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N_l} \end{pmatrix} = \begin{pmatrix} \overline{f_i x_i^0} \\ \overline{f_i x_i^1} \\ \vdots \\ \overline{f_i x_i^{N_l}} \end{pmatrix}$$

The parameter of the least square fitting to power series function (non-linear function) can be obtained by solving a set of linear equations.

Moving average by parabolic fitting

$$\begin{pmatrix} \overline{\Delta x_j^4} & \overline{\Delta x_j^3} & \overline{\Delta x_j^2} \\ \overline{\Delta x_j^3} & \overline{\Delta x_j^2} & \overline{\Delta x_j} \\ \overline{\Delta x_j^2} & \overline{\Delta x_j} & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \overline{f_j \Delta x_j^2} \\ \overline{f_j \Delta x_j} \\ \overline{f_j} \end{pmatrix}$$

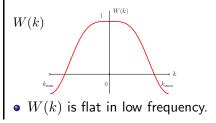
$$c = \begin{vmatrix} \frac{34}{5}\Delta^4 & 0 & \overline{f_j\Delta x_j^2} \\ 0 & 2\Delta^2 & \overline{f_j\Delta x_j} \\ 2\Delta^2 & 0 & \overline{f_j} \end{vmatrix} \middle| \middle/ \left| \begin{vmatrix} \frac{34}{5}\Delta^4 & 0 & 2\Delta^2 \\ 0 & 2\Delta^2 & 0 \\ 2\Delta^2 & 0 & 1 \end{vmatrix} \right|$$
$$= \frac{\frac{68}{5}\Delta^6 \overline{f_j} - 4\Delta^4 \overline{f_j\Delta x_j^2}}{\frac{25}{5}\Delta^6}$$
$$\frac{68[f_{-2} + f_{-1} + f_0 + f_1 + f_2]}{6} = 6$$

Ν

$$\begin{split} \text{Jm.} &= \frac{-\frac{(2-2)(2-2)(2-2)}{5}\Delta^6}{-\frac{4[(-2)^2f_{-2}+(-1)^2f_{-1}+0^2f_0+1^2f_1+2^2f_2]\Delta^2}{5}\Delta^4} \\ &= \Delta^6\left(\left(\frac{68}{25}-\frac{16}{5}\right)(f_{-2}+f_{+2})+\left(\frac{68}{25}-\frac{4}{5}\right)(f_{-1}+f_{+1})+\frac{68}{25}f_0\right) \end{split}$$

$$\begin{array}{l} g_{i} = c \\ = \frac{1}{35} \begin{pmatrix} -3 & 12 & 17 & 12 & -3 \end{pmatrix} \begin{pmatrix} f_{i-2} \\ f_{i-1} \\ f_{i} \\ f_{i+1} \\ f_{i+2} \end{pmatrix} \end{array}$$

- The weight at point *i* is maximum.
- The weights at both ends are negative.



5.7 Gaussian Filter

Gaussian filter:

= Moving average with which the weight, w(x'), is a Gaussian <u>function</u>.

$$w(x) = \frac{1}{\sqrt{2\pi\sigma_x}} e^{-\frac{x^2}{2\sigma_x^2}} \quad \stackrel{\mathcal{F}}{\Longrightarrow} \quad W(k) = e^{-\frac{k^2}{2\sigma_k^2}} \quad \left(\sigma_k = \frac{1}{\sigma_x}\right)$$

(proof is shown in the next page.)

- W(k) is a simple decreasing function.
- $W(k) > 0 \rightarrow$ No spurious resolution.

Fourier Transform of Gaussian function

$$W(k) = \mathcal{F} \{w(x)\}$$

$$= \frac{1}{\sqrt{2\pi\sigma_x}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma_x^2}} e^{-ikx} dx$$

$$(X = \frac{x}{\sqrt{2\sigma_x}})$$

$$= \frac{1}{\sqrt{\pi}} e^{-\frac{\sigma_x^2}{2}k^2} \underbrace{\int_{-\infty}^{\infty} e^{-(X+i\frac{k\sigma_x}{\sqrt{2}})^2} dX}_{=\int e^{-X^2} dX = \sqrt{\pi} \quad (*)}$$

$$= e^{-\frac{\sigma_x^2}{2}k^2} = e^{-\frac{1}{2\sigma_k^2}k^2} \quad (\sigma_k = \frac{1}{\sigma_x})$$

$$\mathcal{F} \left\{ e^{-\frac{x^2}{2\sigma_x^2}} \right\} \propto e^{-\frac{\sigma_x^2k^2}{2}}$$

$$\begin{pmatrix} * \\ I = \int_{-\infty}^{\infty} e^{-(x+ib)^2} dx & \xrightarrow{-R} & \stackrel{y}{\underset{(R \to \infty)}{\overset{e}{\longrightarrow}}} \\ = \int_{-\infty-ib}^{\infty-ib} e^{-z^2} dz & (\text{No poles}) \\ \int_{c} e^{-z^2} dz = 0 & \rightarrow I = \int_{-\infty}^{\infty} e^{-x^2} dx \\ \begin{pmatrix} I^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy \\ = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} r d\theta dr & (t=r^2) \\ = -\pi \left[e^{-t} \right]_{0}^{\infty} = \pi \\ \therefore I = \sqrt{\pi} \end{pmatrix}$$

5.8 Cummulative Average of muliple measurement

- N_k sets of measurement. $f_i^{(k)} = \tilde{f}_i + n_i^{(k)}$ $(k \in \{1, \cdots, N_k\})$
- Cummulative Ave. $\langle\!\langle y_i \rangle\!\rangle \equiv rac{1}{N_k} \sum_{k=1}^{N_k} \! y_i^{(k)}$
- Cummul. Ave. of f_i $g_i = \langle\!\langle f_i \rangle\!\rangle = \widetilde{f_i} + \langle\!\langle n_i \rangle\!\rangle$
- Expected value : $E[g_i]$ $E[g_i] = \tilde{f}_i + \underbrace{E[\langle\langle n_i \rangle\rangle]}_{=\langle\langle E[n_i] \rangle\rangle=0}$

• Variance of
$$g_i$$
: $\sigma_{g_i}^2$ ($\overset{\times}{=}$ Var. of f_i)
 $\sigma_{g_i}^2 = \mathbb{E}\left[(g_i - \mathbb{E}\left[g_i\right])^2\right] = \mathbb{E}\left[\left\{(\widetilde{f}_i + \langle\!\langle n_i \rangle\!\rangle) - \widetilde{f}_i\right\}^2\right]$
 $= \mathbb{E}\left[\langle\!\langle n_i \rangle\!\rangle^2\right] = \mathbb{E}\left[\frac{1}{N_k^2} \sum_{k \in \mathcal{K}} \sum_{k'} n_i^{(k)} n_i^{(k')}\right]$
 $= \mathbb{E}\left[\frac{1}{N_k^2} \sum_{k \in \sigma_n^2} \left(\left(n_i^{(k)}\right)^2 + \sum_{k' \neq k} n_i^{(k)} n_i^{(k')}\right)\right]$
 $= \frac{\sum_{k} \mathbb{E}\left[\left(n_i^{(k)}\right)^2\right]}{N_k^2} + \frac{\sum_{k \neq k \notin k} \mathbb{E}\left[n_i^{(k)} n_i^{(k')}\right]}{N_k^2}$
 $= \frac{1}{N_k^2} \sum_{k=1}^{N_k} \sigma_n^2 = \frac{\sigma_n^2}{N_k}$
 $\sqrt{\sigma_{g_i}^2}$ is called standard error.

Comparison of Cummulative Ave. and Moving Ave.

	Original	Moving Average	Cummulative Average	
Ave.	\widetilde{f}_i	$\left\langle \widetilde{f}_{i}\right\rangle _{m}$	$\widetilde{f_i}$	
Var.*	σ_n^2	$\frac{\sigma_n^2}{N_m}$	$\frac{\sigma_n^2}{N_k}$	
$\left(\begin{array}{ccc} * & \text{for White Noise} \\ N_m & : \text{Number of averaging samples} \\ N_k & : \text{Number of times of measurement} \end{array}\right)$				

- The expected value of average is distorted by moving average, but not distorted by cummulative average.
- The variances become smaller for both averaging.
- If we can obtain measurements under same condition, cummlative average is superior.

5.9 Propagation of Error

Two independent measurements, f and g $\left(|df| \ll |\widetilde{f}|, |dg| \ll |\widetilde{g}|\right)$:

$$\begin{array}{ll} f = \widetilde{f} + df, & \operatorname{E}\left[f\right] = \widetilde{f}, & \operatorname{E}\left[df\right] = 0, & \operatorname{E}\left[(df)^2\right] = \sigma_f^2 \\ g = \widetilde{g} + dg, & \operatorname{E}\left[g\right] = \widetilde{g}, & \operatorname{E}\left[dg\right] = 0, & \operatorname{E}\left[(dg)^2\right] = \sigma_g^2 \end{array}$$

Consider evaluation of a new result : $h \equiv h(f,g) = \widetilde{h}(f,g) + dh(f,g)$

• Average:

$$dh = \frac{\partial h}{\partial f} \Big|_{(\tilde{f},\tilde{g})} df + \frac{\partial h}{\partial g} \Big|_{(\tilde{f},\tilde{g})} dg$$

$$= h'_f df + h'_g dg$$

$$E [dh] = h'_f E [df] + h'_g E [dg]$$

$$= 0$$

$$E [h] = E \left[\tilde{h} + dh\right] = \tilde{h}(\tilde{f},\tilde{g})$$

Variance:

$$\begin{aligned} \sigma_h^2 &= \mathbf{E}\left[(dh)^2\right] = \mathbf{E}\left[\left(h'_f df + h'_g dg\right)^2\right] \\
&= h'_f{}^2 \underbrace{\mathbf{E}\left[df^2\right]}_{\sigma_f^2} + h'_g{}^2 \underbrace{\mathbf{E}\left[dg^2\right]}_{\sigma_g^2} + 2h'_f h'_g \underbrace{\mathbf{E}\left[df \cdot dg\right]}_{=0} \\
&= \left(\left.\frac{\partial h}{\partial f}\right|_{\widetilde{h}}\right)^2 \sigma_f^2 + \left(\left.\frac{\partial h}{\partial g}\right|_{\widetilde{h}}\right)^2 \sigma_g^2
\end{aligned}$$

Example of Error Propagation

$$\begin{split} h &\equiv h(f,g) \\ \sigma_h^2 &= \left(\left. \frac{\partial h}{\partial f} \right|_{\widetilde{h}} \right)^2 \sigma_f^2 + \left(\left. \frac{\partial h}{\partial g} \right|_{\widetilde{h}} \right)^2 \sigma_g^2 \end{split}$$

• Add. and Sub.

$$h = f + g
\sigma_h^2 = \sigma_{f+g}^2 = \sigma_f^2 + \sigma_g^2
h = f - g
\sigma_h^2 = \sigma_{f-g}^2 = \sigma_f^2 + \sigma_g^2
Sum of each Variance.$$

• Mul. and Div.

•
$$h = f \cdot g$$

 $\sigma_h^2 = \sigma_{f \cdot g}^2 = g^2 \sigma_f^2 + f^2 \sigma_g^2$
 $\frac{\sigma_h^2}{h^2} = \frac{\sigma_f^2}{f^2} + \frac{\sigma_g^2}{g^2}$
• $h = f/g$
 $\sigma_h^2 = \sigma_{f/g}^2 = \frac{1}{g^2} \sigma_f^2 + \frac{f^2}{g^4} \sigma_g^2$
 $\frac{\sigma_h^2}{h^2} = \frac{\sigma_f^2}{f^2} + \frac{\sigma_g^2}{g^2}$
Sum of each normalized Variance.

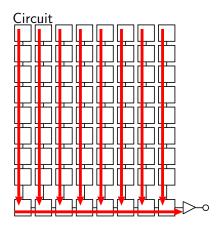
6. Image data6.1 Image sensor

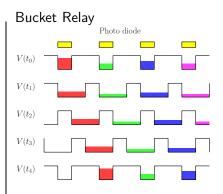
Image Sensor

- CCD (Charge Coupled Device)
- CMOS (Complementary MOS(Metal Oxide Semiconductor))

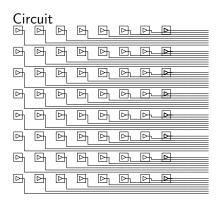
	CCD	CMOS
detection	Photo diode (Photo electron emission/excitation)	
Sensitivity	High	Low(High recently)
Amplifier, A/D converter	one for whole pixels	one for each pixel
Readout	Bucket relay (only whole pixels reading)	Addressing (possible to read one pixel)
Defect pixel	None	Existing

CCD





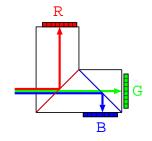
CMOS



Color Camera

• three chips (high quality)

Separating color by using prisms, each of which can reflect a certain color. Separated beams are detected each sensor.



one chip (small size)
 Color filter is placed in front of sensor.

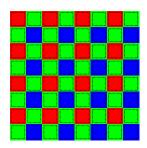
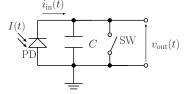


Image data

Signal to Noise ratio and Resolution

6.2 Signal to Noise ratio and Resolution

• Charge accumuration by photo diode



• Incident Light $I(t) \propto i_{
m in}(t)$

- SW=ON(close) : $v_{out}(t) = 0$
- ► SW=OFF(open) (t = [0,T]) $v_{out}(T) = \frac{1}{C} \int_0^T i_{in}(t) dt$ If $I(t) = \overline{I}$ (const), $v_{out}(T) = k\overline{I}T$. Signal is proportional to T.

I includes fluctuation : $I(t) = \overline{I} + \delta I(t) \to \overline{I} \pm \sigma_{\delta I}$ $\delta v_{\text{out}}(T) = k \int_0^T \delta I(t) dt$ $\frac{1}{T} \int_0^T \delta I(t) dt = \langle\!\langle \delta I \rangle\!\rangle$ \equiv Cummul. ave. of $\delta I(t)$ $\sigma_{\langle\!\langle \delta I \rangle\!\rangle} \propto \sigma_{\delta I} / \sqrt{T}$ (δI is white) $\sigma_{v_{\text{out}}}(T) = T\sigma_{\langle\langle \delta I \rangle\rangle} = k' \sigma_{\delta I} \sqrt{T}$ Noise is proportional to \sqrt{T} . Signal to Noise Ratio S/N :

 $S/N \propto \sqrt{T}$ The quality of signal increases with increasing T.

- Area of Pixel A $i_{\rm in}(t) \propto \int_A I(t,x,y) \, dA$
 - $I(t, x, y) = \overline{I}:$ $v_{out}(A) = k\overline{I}A$ $v_{out} is proportional to A.$

►
$$I(t, x, y) = \overline{I} + \delta I(t, x, y) :$$

 $\delta v_{out} = k \int_A \delta I(t, x, y) dA$
 $\sigma_{\langle\langle \delta I \rangle\rangle} \propto \sigma_{\delta I} / \sqrt{A}$
 $\sigma_{v_{out}}(A) = k' \sigma_{\delta I} \sqrt{A}$
 $\sigma_{v_{out}}$ is proportional to \sqrt{A} .

Signal to Noise Ratio S/N : $S/N \propto \sqrt{A}$ The quality of signal increases with increasing pixel size A.

Resolution

- ► Temporal resolution ⇔Exposure time
- ► Spatial resolution ⇔Pixel Size

	S/N Larger is better	Resolution Smaller is better
time	$\propto \sqrt{T}$	Т
space	$\propto \sqrt{A}$	\sqrt{A}

6.3 Discretization and Quantization

- Discretization and Quantization Continuous function f(x) $(x \in \mathbb{R}, f(x) \in \mathbb{R})$
 - Discretization: (Digitizing Domain) $x_n = n\Delta x, n \in \mathbb{Z}$
 - Quantization: (Digitizing Range of f) $f_m = m\Delta f, m \in \mathbb{Z}$

Image Data

- ▶ Pixel : Discrete point \Leftrightarrow $i, j \in \mathbb{Z}$ (e.g. 640×400, 1024×768)
- Intensity : Quantized of brightness

$$I_{i,j} \in \mathbb{Z}$$

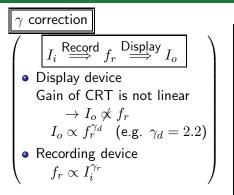
A/D (Analog to Digital) converter

 \Leftrightarrow

$$\begin{pmatrix} e.g. \\ 8bits & (0, \cdots, 255) \\ 10bits & (0, \cdots, 1023) \\ 12bits & (0, \cdots, 4095) \end{pmatrix}$$

Image data

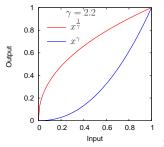
6.4 Correction of Intensity



$$\therefore I_o = I_i^{\gamma_r \cdot \gamma_d}$$

- In general, recording device has $\gamma_r = 1/\gamma_d$ so that $I_o = I_i$.
- This is not appropriate to quantitative processing.
- If we wish quantitative evaluation, apply the cancelation of the γ correction

$$\widehat{f} = f_r^{1/\gamma_r} \propto I_i.$$



101 / 197

6.5 Image format

• Single format

Format	Name	Color	bit	Compres.	Revers.	Multi- image
PBM	Portable Bit Map	White/Black	1	×	0	×
PGM	Portable Gray Map	Gray	8	×	0	×
PPM	Portable Pixel Map	RGB	3×8	×	0	×
GIF	Graphics Interchange Format	RGB	3×8	0	0	0
JPEG	Joint Photographic Experts Group	RGB	3×8	0	×	×
PNG	Portable Network Graphics	RGB-alpha*	4×16	0	0	×

* : alpha is a channel for transparency

• Integrated Multiple formats

Format	Name
PNM	Portable aNy Map (PBM, PGM, PPM)
TIFF	Tagged Image File Format
BMP	Microsoft windows BitMaP