
Noise Reduction using Moving average Multiple moving average

5.5 Multiple moving average

In the case of applying two times,

gi =
∑

m

wmfi−m

hi =
∑

m′

wm′gi−m′

(gi−m′ =
∑

m

wmfi−m′−m)

=

N∑

m′=−N

N∑

m=−N

wm′wmfi−m′−m

When Nm = 3(N = 1), wm = w′
m = 1/3

gi =
fi−2 + 2fi−1 + 3fi−1 + 2fi+1 + fi+2

9

0

x′

w(x′)

∆x

N∆x−N∆x

(2N + 1)∆x = Nm∆x

w

Applying multiple moving aver-
age is equivalent to moving av-
erage with which central weight
is larger than neighboring points.
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Noise Reduction using Moving average

Spectral Gain of Multiple Moving Average

In the case of two times,

g(x) =

∫ ∞

−∞
w(x′)f(x− x′) dx′ → G(k) = W (k)F (k)

h(x) =

∫ ∞

−∞
w(x′)g(x − x′) dx′ → H(k) = W (k)G(k)

= W 2(k)F (k)

1 sinc(θ)

sinc2(θ)

θ

(θ = kXm)

0 π 2π 3π−π−2π−3π

Further reduction of higher
frequency components is applied.

No spurious resolution.
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Noise Reduction using Moving average Higher order Moving average (Savitzky-Golay filter)

5.6 Higher order Moving average (Savitzky-Golay filter)

For each i,

Represent the smoothed function gi(xj)
by a power series expansion.

(j ∈ {i−N, · · · , i+N})
(In the case of second order expansion,)

gi(xj) = ai(xj − xi)
2 + bi(xj − xi) + ci

= ai∆x2j,i + bi∆xj,i + ci x

gi

fi

fi+1

fi+2

fi−1

fi−2

xi xi+1xi+2xi−1xi−2

Using by the least square method, determine the parameters ai, bi,
and ci which are the parameters of the fitting function gi(xj).

The moving average at the point i corresponds to the value of the
fitting function at the xj = xi; i.e gi(xi) = ci.
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Noise Reduction using Moving average

Least square fitting to the parabolic function

Fitting function
gj = a∆x2j + b∆xj + c (omit i)

Minimize Average of square residual, E:

E(a, b, c) =
1

Nm

i+N∑

j=i−N

(gj − fj)
2 ≡ (gj − fj)2

minimize E(a, b, c) ⇐⇒ ∂E
∂ξ = 0 (ξ ∈ {a, b, c})

(
∂E
∂ξ = ∂

∂ξ (gj(ξ)− fj)2 = 2(gj(ξ)− fj)
∂gj(ξ)
∂ξ

∂gj
∂a = ∆x2j ,

∂gj
∂b = ∆xj,

∂gj
∂c = 1

)




∆x4j ∆x3j ∆x2j
∆x3j ∆x2j ∆xj

∆x2j ∆xj 1







a
b
c


 =




fj∆x2j
fj∆xj
fj
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Noise Reduction using Moving average

Least square fitting to the power series

Fitting function

f̃(x;a) =

Nl∑

l=0

alx
l,

a = (a0, a1, · · · , aNl
)

Sampling points (known)
(xi, fi), i ∈ {1, · · · , N}

Minimize Average of
square residual, E

E(a) =
1

Ni

Ni∑

i=1

(f̃(xi;a)− fi)
2

≡ (f̃(xi;a)− fi)2

minimize E(a) ⇔ ∂E

∂al
= 0

(
∂E
∂al

= ∂
∂al

(f̃i − fi)2 = 2(f̃i − fi)
∂f̃i
∂al

= 2
(
f̃ixli − fixli

)
= 0

(
∵

∂f̃i
∂al

= xl
)

)

∴

Nl∑

l=0

xl+m
i al = fix

m
i




x0 x1 · · · xNl

x1 x2 · · · xNl+1

...
...

. . .
...

xNl xNl+1 · · · xN2l







a0
a1
...

aNl


 =




fix
0
i

fix1i
...

fix
Nl

i




The parameter of the least square fitting
to power series function (non-linear func-
tion) can be obtained by solving a set of
linear equations.

86 / 197



Noise Reduction using Moving average

Moving average by parabolic fitting



∆x4j ∆x3j ∆x2j
∆x3j ∆x2j ∆xj

∆x2j ∆xj 1







a
b
c


 =




fj∆x2j
fj∆xj
fj




In the case of Nm = 5(N = 2)



∆xj = 0, ∆x3j = 0,

∆x2j/∆
2 = (−2)2+(−1)2+02+(+1)2+(+2)2

5 = 2(12+22)
5 = 2,

∆x4j/∆
4 = 2(14+24)

5 = 34
5




c =

∣∣∣∣∣∣

34
5 ∆

4 0 fj∆x2j
0 2∆2 fj∆xj

2∆2 0 fj

∣∣∣∣∣∣

/∣∣∣∣∣∣

34
5 ∆

4 0 2∆2

0 2∆2 0
2∆2 0 1

∣∣∣∣∣∣

=
68
5 ∆

6fj − 4∆4fj∆x2j
28
5 ∆

6

Num. =
68[f−2 + f−1 + f0 + f1 + f2]

5
∆6

− 4[(−2)2f−2 + (−1)2f−1 + 02f0 + 12f1 + 22f2]∆
2

5
∆4

= ∆6
((

68
25 − 16

5

)
(f−2 + f+2) +

(
68
25 − 4

5

)
(f−1 + f+1) +

68
25f0

)

gi = c

=
1

35
( −3 12 17 12 −3 )




fi−2

fi−1

fi
fi+1

fi+2




The weight at point i is
maximum.

The weights at both ends are
negative.

W (k)

k

W (k)

0

1

kmin kmax

W (k) is flat in low frequency.
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Noise Reduction using Moving average Gaussian Filter

5.7 Gaussian Filter

Gaussian filter:
≡ Moving average with which the weight, w(x′), is a Gaussian

function.

w(x) =
1√
2πσx

e
− x2

2σ2
x

F
=⇒ W (k) = e

− k2

2σ2
k

(
σk = 1

σx

)

(proof is shown in the next page.)

W (k) is a simple decreasing function.

W (k) > 0 → No spurious resolution.
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Noise Reduction using Moving average Gaussian Filter

Fourier Transform of Gaussian function

W (k) = F {w(x)}

=
1√
2πσx

∫ ∞

−∞
e
− x2

2σ2
x e−ikx dx

(X = x√
2σx

)

=
1√
π
e−

σ2
x
2
k2
∫ ∞

−∞
e
−(X+i kσx√

2
)2
dX

︸ ︷︷ ︸
=
∫
e−X2 dX=

√
π (∗)

= e−
σ2
x
2
k2 = e

− 1

2σ2
k

k2

(σk = 1
σx
)

F
{
e
− x2

2σ2
x

}
∝ e−

σ2
xk2

2

(∗)


I =

∫ ∞

−∞
e−(x+ib)2 dx

=

∫ ∞−ib

−∞−ib
e−z2 dz

Z

x

y

−R +R

−ibc
(R → ∞)

(No poles)∫

c
e−z2 dz = 0 → I =

∫ ∞

−∞
e−x2

dx







I2 =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy

=

∫ 2π

0

∫ ∞

0
e−r2r dθ dr (t = r2)

= −π
[
e−t
]∞
0

= π

∴ I =
√
π




89 / 197



Noise Reduction using Moving average Cummulative Average of muliple measurement

5.8 Cummulative Average of muliple measurement

Nk sets of measurement.
f
(k)
i = f̃i + n

(k)
i

(k ∈ {1, · · · , Nk})

Cummulative Ave.

〈〈yi〉〉 ≡
1

Nk

Nk∑

k=1

y
(k)
i

Cummul. Ave. of fi
gi = 〈〈fi〉〉 = f̃i + 〈〈ni〉〉

Expected value : E [gi]

E [gi] = f̃i + E [〈〈ni〉〉]︸ ︷︷ ︸
=〈〈E[ni]〉〉=0= f̃i

Variance of gi : σ
2
gi (※ 6= Var. of fi)

σ2
gi = E

[
(gi − E [gi])

2
]
= E

[{
(f̃i + 〈〈ni〉〉)− f̃i

}2
]

= E
[
〈〈ni〉〉2

]
= E

[
1

N2
k

∑

k

∑

k′

n
(k)
i n

(k′)
i

]

= E

[
1

N2
k

∑

k

((
n
(k)
i

)2
+
∑

k′ 6=k

n
(k)
i n

(k′)
i

)]

=

∑

k

σ2
n︷ ︸︸ ︷

E

[(
n
(k)
i

)2]

N2
k

+

∑

k

∑

k′ 6=k

0︷ ︸︸ ︷
E
[
n
(k)
i n

(k′)
i

]

N2
k

=
1

N2
k

Nk∑

k=1

σ2
n =

σ2
n

Nk

√
σ2
gi is called standard error.
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Noise Reduction using Moving average Cummulative Average of muliple measurement

Comparison of Cummulative Ave. and Moving Ave.

Original
Moving
Average

Cummulative
Average

Ave. f̃i

〈
f̃i

〉
m

f̃i

Var.* σ2
n

σ2
n

Nm

σ2
n

Nk



* for White Noise
Nm : Number of averaging samples
Nk : Number of times of measurement




The expected value of average is distorted by moving average, but
not distorted by cummulative average.

The variances become smaller for both averaging.

If we can obtain measurements under same condition, cummlative
average is superior.
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Noise Reduction using Moving average Propagation of Error

5.9 Propagation of Error

Two independent measurements, f and g (|df | ≪ |f̃ |, |dg| ≪ |g̃|) :

f = f̃ + df, E [f ] = f̃ , E [df ] = 0, E
[
(df)2

]
= σ2

f

g = g̃ + dg, E [g] = g̃, E [dg] = 0, E
[
(dg)2

]
= σ2

g

Consider evaluation of a new result : h ≡ h(f, g) = h̃(f, g) + dh(f, g)

Average:

dh =
∂h

∂f

∣∣∣∣
(f̃ ,g̃)

df +
∂h

∂g

∣∣∣∣
(f̃ ,g̃)

dg

= h′fdf + h′gdg

E [dh] = h′fE [df ] + h′gE [dg]

= 0

E [h] = E
[
h̃+ dh

]
= h̃(f̃ , g̃)

Variance:
σ2
h = E

[
(dh)2

]
= E

[(
h′fdf + h′gdg

)2]

= h′f
2
E
[
df2
]

︸ ︷︷ ︸
σ2
f

+h′g
2
E
[
dg2
]

︸ ︷︷ ︸
σ2
g

+2h′fh
′
g E [df · dg]︸ ︷︷ ︸

=0

=

(
∂h

∂f

∣∣∣∣
h̃

)2

σ2
f +

(
∂h

∂g

∣∣∣∣
h̃

)2

σ2
g
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Noise Reduction using Moving average Propagation of Error

Example of Error Propagation

h ≡ h(f, g)

σ2
h =

(
∂h
∂f

∣∣∣
h̃

)2
σ2
f +

(
∂h
∂g

∣∣∣
h̃

)2
σ2
g

Add. and Sub.
◮ h = f + g

σ2
h = σ2

f+g = σ2
f + σ2

g
◮ h = f − g

σ2
h = σ2

f−g = σ2
f + σ2

g

Sum of each Variance.

Mul. and Div.
◮ h = f · g

σ2
h = σ2

f ·g = g2σ2
f + f2σ2

g

σ2
h

h2
=

σ2
f

f2
+

σ2
g

g2
◮ h = f/g

σ2
h = σ2

f/g = 1

g2 σ
2
f + f2

g4 σ
2
g

σ2
h

h2
=

σ2
f

f2
+

σ2
g

g2

Sum of each normalized Variance.
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Image data Image sensor

6. Image data
6.1 Image sensor

Image Sensor
◮ CCD (Charge Coupled Device)
◮ CMOS (Complementary MOS(Metal Oxide Semiconductor))

CCD CMOS

detection Photo diode (Photo electron emission/excitation)

Sensitivity
High Low(High recently)

Amplifier,
A/D converter

one for whole pixels one for each pixel

Readout Bucket relay Addressing
(only whole pixels
reading)

(possible to read
one pixel)

Defect pixel
None Existing
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Image data Image sensor

CCD

Circuit Bucket Relay

V (t0)

V (t1)

V (t2)

V (t3)

V (t4)

Photo diode
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Image data Image sensor

CMOS

Circuit
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Image data Image sensor

Color Camera

three chips (high quality)

Separating color by using prisms,
each of which can reflect a
certain color. Separated beams
are detected each sensor.

R

G

B

one chip (small size)

Color filter is placed in front of
sensor.
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Image data Signal to Noise ratio and Resolution

6.2 Signal to Noise ratio and Resolution

Charge accumuration by photo
diode

iin(t)

vout(t)

I(t)

C SW

PD

Incident Light I(t) ∝ iin(t)
◮ SW=ON(close) : vout(t) = 0
◮ SW=OFF(open) (t = [0, T ])

vout(T ) =
1

C

∫ T

0
iin(t) dt

If I(t) = I (const),
vout(T ) = kIT .

Signal is proportional to T .

I includes fluctuation :
I(t) = I + δI(t) → I ± σδI
δvout(T ) = k

∫ T
0 δI(t) dt

1
T

∫ T
0 δI(t) dt = 〈〈δI〉〉
≡ Cummul. ave. of δI(t)

σ〈〈δI〉〉 ∝ σδI/
√
T (δI is white)

σvout(T ) = Tσ〈〈δI〉〉 = k′σδI
√
T

Noise is proportional to
√
T .

Signal to Noise Ratio S/N :
S/N ∝

√
T

The quality of signal increases
with increasing T .
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Image data Signal to Noise ratio and Resolution

Area of Pixel A

iin(t) ∝
∫

A
I(t, x, y) dA

◮ I(t, x, y) = I :
vout(A) = kIA

vout is proportional to A.

◮ I(t, x, y) = I + δI(t, x, y) :
δvout = k

∫
A
δI(t, x, y) dA

σ〈〈δI〉〉 ∝ σδI/
√
A

σvout(A) = k′σδI

√
A

σvout is proportional to
√
A.

Signal to Noise Ratio S/N :
S/N ∝

√
A

The quality of signal increases
with increasing pixel size A.

Resolution
◮ Temporal resolution ⇔Exposure

time
◮ Spatial resolution ⇔Pixel Size

S/N Resolution
Larger
is better

Smaller
is better

time ∝
√
T T

space ∝
√
A

√
A
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Image data Discretization and Quantization

6.3 Discretization and Quantization

Discretization and Quantization
Continuous functionf(x)

(x ∈ R, f(x) ∈ R)

◮ Discretization:
(Digitizing Domain)
xn = n∆x, n ∈ Z

◮ Quantization:
(Digitizing Range of f)
fm = m∆f , m ∈ Z

Image Data
◮ Pixel : Discrete point

⇔ i, j ∈ Z

(e.g. 640×400, 1024×768)

◮ Intensity : Quantized of
brightness

⇔ Ii,j ∈ Z

A/D (Analog to Digital) converter




e.g.
8bits (0,· · · , 255)

10bits (0,· · · , 1023)
12bits (0,· · · , 4095)
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Image data Correction of Intensity

6.4 Correction of Intensity

γ correction



Ii
Record
=⇒ fr

Display
=⇒ Io

Display device
Gain of CRT is not linear

→ Io 6∝ fr
Io ∝ fγd

r (e.g. γd = 2.2)

Recording device
fr ∝ Iγri




∴ Io = Iγr ·γdi

In general, recording device has
γr = 1/γd so that Io = Ii.

This is not appropriate to
quantitative processing.

If we wish quantitative
evaluation, apply the cancelation
of the γ correction

f̂ = f
1/γr
r ∝ Ii.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

O
ut

pu
t

Input

γ = 2.2

xγ
x

1
γ
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Image data Image format

6.5 Image format

Single format

Format Name Color bit Compres. Revers. Multi-
image

PBM Portable Bit Map White/Black 1 × ○ ×
PGM Portable Gray Map Gray 8 × ○ ×
PPM Portable Pixel Map RGB 3×8 × ○ ×
GIF Graphics Interchange

Format
RGB 3×8 ○ ○ ○

JPEG Joint Photographic
Experts Group

RGB 3×8 ○ × ×
PNG Portable Network

Graphics
RGB-alpha∗ 4×16 ○ ○ ×

* : alpha is a channel for transparency

Integrated Multiple formats
Format Name

PNM Portable aNy Map (PBM, PGM, PPM)

TIFF Tagged Image File Format

BMP Microsoft windows BitMaP
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