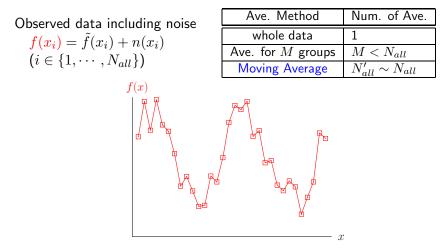
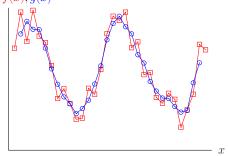
5. Noise Reduction using Moving average



5.1 Moving Average

Averages are computed while replacing a part of samples. f(x), g(x)



Moving average with 3 points $g_2 = (f_1 + f_2 + f_3)/3$ $g_3 = (f_2 + f_3 + f_4)/3$ $g_4 = (f_3 + f_4 + f_5)/3$ $g_5 = (f_4 + f_5 + f_6)/3$ \vdots $g_i = (f_{i-1} + f_i + f_{i+1})/3$

$$g_i = \sum_{m'} w_{m'} f_{i+m'} = \sum_m w_m f_{i-m}$$

5.2 Relation between Moving Average and Convolution

$$\begin{array}{c} \hline \text{Moving Average} \equiv \text{Discrete Convolution Integral} \\ g(x): \text{ averaged, } f(x): \text{ observed} \\ \hline \text{Continuous system: } g(x) = \int_{-\infty}^{\infty} w(x') f(x - x') \, dx' \quad (\text{Convolution}) \\ \hline \text{Discrete system: } g_i = \sum_{m=-\infty}^{\infty} w_m f_{i-m} \Delta x \quad (f_i \equiv f(x_i)) \\ \hline \text{If } m \text{ is finite } (N_m = 2N + 1), \\ g_i = \sum_{m=-N}^{N} \widehat{w}_m f_{i-m} \quad (\widehat{w}_m = w_m \Delta x) \quad (1) \\ \int_{-\infty}^{\infty} w(x') \, dx' = 1 \quad (\text{Normalization}) \\ \hline \end{array}$$

Simple Moving Average

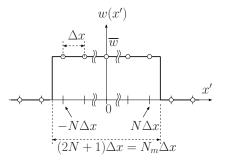
5.3 Simple Moving Average

Weight w(x') inside the window is constant

$$w(x') = \begin{cases} \text{const} = \overline{w} & \left(|x'| \le \frac{N_m \Delta x}{2} \right) \\ 0 & \text{(elsewhere)} \end{cases}$$

From Eq.(2)

$$\int_{-\infty}^{\infty} w(x') dx' = N_m \Delta x \overline{w}$$
$$= N_m \widehat{w} = 1$$
$$\widehat{w}_m = \begin{cases} \frac{1}{N_m} & (|m| \le N) \\ 0 & (\text{otherwise}) \end{cases}$$



Comparison of Noise Reduction (original signal)

Before averaging $f_i = \tilde{f}_i + n_i$

(f: obs., \tilde{f} : true (unique), n: noise)

 $egin{pmatrix} \mathsf{Measurement} & \mathsf{infinite times:} \ f_i^j & (j \in \{1, \cdots, \infty\}) \end{pmatrix}$

• Average with respect to *j*:

$$\mathbf{E}\left[f_{i}\right] = \mathbf{E}\left[\tilde{f}_{i} + n_{i}\right] = \underbrace{\mathbf{E}\left[\tilde{f}_{i}\right]}_{=\tilde{f}_{i}} + \underbrace{\mathbf{E}\left[n_{i}\right]}_{=0} = \tilde{f}_{i}$$

• Variance: $\sigma_r^2 = 1$

$$\begin{aligned} \sigma_{f_i}^2 &= \mathbf{E}\left[(f_i - \mathbf{E}\left[f_i\right])^2\right] \\ &= \mathbf{E}\left[((\tilde{f}_i + n_i) - \tilde{f}_i)^2\right] \\ &= \mathbf{E}\left[n_i^2\right] = \sigma_{n_i}^2 = \sigma_n^2 \end{aligned}$$

Another method to evaluate variance If two signals a and b have no correlations,

$$\sigma_{a\pm b}^2 = \sigma_a^2 + \sigma_b^2.$$

 \tilde{f}_i and n_i have no correlations, and
 $\sigma_{\tilde{f}_i}^2 = 0$ because \tilde{f} is unique.
 $\therefore \sigma_{f_i}^2 = \sigma_{\tilde{f}_i}^2 + \sigma_{n_i}^2 = \sigma_n^2$

Comparison of Noise Reduction (Moving Average)(1)

Moving Average
$$g_i = \frac{1}{N_m} \sum_m f_{i-m} \equiv \langle f_i \rangle_m$$

$$f_i = \tilde{f}_i + n_i \to g_i = \left\langle \tilde{f}_i \right\rangle_m + \left\langle n_i \right\rangle_m$$

• Average with respect to *j*:

$$\mathbf{E}\left[g_{i}\right] = \mathbf{E}\left[\left\langle\tilde{f}_{i}\right\rangle_{m}\right] + \mathbf{E}\left[\left\langle n_{i}\right\rangle_{m}\right] = \left\langle\underbrace{\mathbf{E}\left[\tilde{f}_{i}\right]}_{=\tilde{f}_{i}}\right\rangle_{m} + \left\langle\underbrace{\mathbf{E}\left[n_{i}\right]}_{=0}\right\rangle_{m} = \left\langle\tilde{f}_{i}\right\rangle_{m}$$

Variance:

$$\begin{split} \sigma_{g_i}^2 &= \mathbf{E}\left[(g_i - \mathbf{E}\left[g_i\right])^2\right] = \mathbf{E}\left[\left\{\left(\left\langle \tilde{f}_i \right\rangle_m + \langle n_i \rangle_m\right) - \left\langle \tilde{f}_i \right\rangle_m\right\}^2\right] = \mathbf{E}\left[\langle n_i \rangle_m^2\right] \\ &= \mathbf{E}\left[\left(\frac{\sum_m n_{i-m}}{N_m}\right) \cdot \left(\frac{\sum_m n_{i-m}}{N_m}\right)\right] = \mathbf{E}\left[\frac{\sum_m \sum_{m'} n_{i-m} n_{i-m'}}{N_m^2}\right] \\ &= \frac{1}{N_m^2} \sum_m \sum_{m'} \mathbf{E}\left[n_{i-m} n_{i-m'}\right] \\ & \underline{\text{The variance depends on the auto-correlation of noise.}} \end{split}$$

Comparison of Noise Reduction (Moving Average)(2)

Variation depending noise property

$$\sigma_{g_i}^2 = \frac{1}{N_m^2} \sum_m \sum_{m'} E\left[n_{i-m} n_{i-m'}\right]$$

• Case of White noise: (n_{i-m} and n_{i-m'} are independent.)

$$E[n_{i-m}n_{i-m'}] = \sigma_n^2 \delta_{m,m'}$$
$$\sigma_{g_i}^2 = \frac{\sigma_n^2}{N_m^2} \underbrace{\sum_m \sum_{m'} \delta_{m,m'}}_{N_m}$$
$$= \frac{\sigma_n^2}{N_m}$$

• Case of Low frequency noise $(n_{i-m} \simeq n_{i-m'})$

$$E[n_{i-m}n_{i-m'}] \simeq \sigma_n^2$$
$$\sigma_{g_i}^2 \simeq \frac{\sigma_n^2}{N_m^2} \underbrace{\sum_m \sum_{m'} 1}_{N_m^2}$$
$$= \sigma_n^2 \underbrace{N_m^2}_{N_m^2}$$

Comparison of Noise Reduction (Summary)

	Original	Moving Average	
Ave.	\widetilde{f}_i	$\left< ilde{f_i} ight>_m$ (Smoothed True signal (drawback))	
Var.	σ_n^2	White Noise (Best)	Low frequency noise (Worst)
		$\frac{\sigma_n^2}{N_m}$ reduced to $1/N_m$ times (advantage)	σ_n^2 Not reduced

Simple Moving Average

Simple Moving Average

Spectral Gain of simple moving average

Fourier Transform of w(x')

$$w(x') = \overline{w} \equiv \frac{1}{2X_m}$$

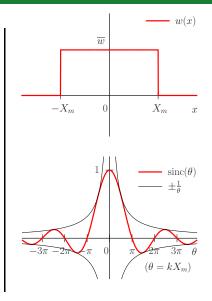
$$\left(|x'| \le X_m = \frac{N_m \Delta x}{2} \right)$$

$$W(k) = \int_{-\infty}^{\infty} w(x') e^{-ikx'} dx'$$

$$= \frac{1}{2X_m} \int_{-X_m}^{X_m} e^{-ikx'} dx'$$

$$= \frac{1}{-2ikX_m} (e^{-ikX_m} - e^{+ikX_m})$$

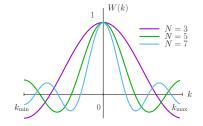
$$= \frac{\sin(kX_m)}{kX_m} = \operatorname{sinc}(kX_m)$$



Spectral Gain of simple moving average (cont.)

$$g(x) = w(x) * f(x)$$
$$G(k) = W(k) \cdot F(k)$$
$$W(k) = \operatorname{sinc}(kX_m)$$
$$(X_m = \frac{N_m \Delta x}{2})$$

Moving average can filtrate higher frequency components.

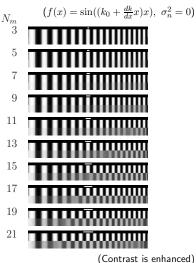


However,
$$\begin{split} G(k) &= W(k)F(k) = W(k)\left[\widetilde{F}(k) + N(k)\right] \\ &= W(k)\widetilde{F}(k) + W(k)N(k) \end{split}$$

Since the higher frequency components of the true signal, $\tilde{f}(x)$, are reduced as well as those of the noise (n(x)), the true signal is distorted.

5.4 Distortion and Spurious Resolution

Distortion of true signal by moving average

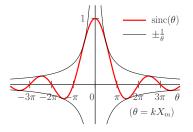


• With increasing number of sampling N_m , intensity of higher frequency components become smaller.

 \downarrow The choice of appropriate N_m is important.

 When N_m is large, intensity becomes larger at higher frequency but those patterns are inverted. (Spurious resolution) Simple Moving Average

Cause of Spurious Resolution



With increasing k, W(k) is reduced. W(k) becomes 0 at $kX_m = \pi$. After that it becomes negative. $W(k) < 0 \rightarrow$ Inversion of intensity. The spurious resolution is found in other filtering.