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3.6 Generation of Random Noise

Ideal Random Number: No periodicity → White Noise

Computer simulation: Random numbers are required for generation
of simulated noise. Normal rand. num. are required in many cases.

A function in most computers is only a series of Uniform Distrib.
Uniform Random number: X ∼ U [min,max]
Implemented one in computer system is X ∼ U [0, 1].

(
X ∈ [0, 1] is generated and the probability to generating
them is same.

)

Methods to generate Normal Rand. from Uniform Rand.
◮ Sum of plural Uniform Random numbers.
◮ Coordinate transform of Uniform Random numbers
◮ Use of Multi-dimensional probability distribution function
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Probability of independent events

Random Variable: X
X ∈ {x1, x2, · · · , xn} (Discrete)
X ∈ [xmin, xmax] (Continuous)

Probability Density Function: p(x)
Probability of X = x:

(In cont. system, p(x) dx.)

Cumulative Distribution Function:

P (X < x) =

∫ x

−∞

p(x) dx

(P (X < ∞) = 1)

Average (expected value) of X:

x =

∫
∞

−∞

xp(x) dx

Average of function with X:

f(X) = E [f(X)] =

∫
∞

−∞

f(x)p(x) dx

Variance of X:
σ2
x = (x− x)2 = x2 − x2













(x− x)2 =

∫

(x− x)2 p(x) dx

=

∫

(x2 − 2xx+ x2) p(x) dx

=

∫

x2 p(x) dx

︸ ︷︷ ︸

=x2

−2x

∫

x p(x) dx

︸ ︷︷ ︸

=x

+x2
∫

p(x) dx

︸ ︷︷ ︸

=1

= x2 − x2














Incident Prob. Dens. Func. for two
independent events:

p(x1, x2) = p1(x1) p2(x2)

◮ x1 + x2 = x1 + x2

◮ σ2
x1+x2

= σ2
x1

+ σ2
x2

◮ x1x2 = x1 · x2
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Generation of Normal random distribution using sum of uniform random numbers

Central Limit Theorem
Sum of Random Variables which obey an independent distribution con-
verges to a Normal distribution. (There are some exceptions.)

Xu ∼ U [0, 1] → p(x) = 1

Sum of two random number:

F (x) = P (X1 +X2 < x) =

∫ ∫

x1+x2<x

dx1 dx2

Case of 0 < x ≤ 1:

F (x) =

∫ x

x1=0

∫ x−x1

x2=0
dx2 dx1 =

x2

2

Case of 1 < x ≤ 2:

F (x) =

(∫ x−1

x1=0

∫ 1

x2=0
+

∫ 1

x1=x−1

∫ x−x1

x2=0

)

dx2 dx1

= −x2

2
+ 2x− 1

p(x) =

{
x (0 < x ≤ 1)

2− x (1 < x ≤ 2)

x1x1

x2x2
x2 = x− x1

x2 = x− x1

x x− 1

1
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Xu ∼ U [0, 1] → p(x) = 1

Average and Variance






xu =

∫ 1

0
xu dxu =

1

2

σ2
xu

=

∫ 1

0
(xu − xu)

2 dxu = x2u − xu
2

= 1
3 − 1

4 = 1
12

X =

N∑

n=1

Xu







x =
N∑

n=1

xu =
N

2

σ2
x =

N∑

n=1

σ2
xu

=
N

12

When N = 12,

X =

12∑

n=1

Xu − 6 ∼ N [0, 1]

is obtained as a Normal distribution.






N [x̄, σ2
x] :

Normal distribution
with average, x̄
with variance, σ2

x







p(x) =
1√
2πσx

e
−

(x−x̄)2

2σ2
x
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Arbitrary random distribution using coordinate transform

Coordinate change using y = f(x)
from Px(X < x) to Py(Y < y).

∆P

y = f(x)

00

11

xmin xmax

x

Px(x)

ymin ymax

y

Py(y)

∆P = px(x) dx ∆P = py(y) dy

px(x) dx = py(y) dy

We can obtain the transformation
f(x) from X ∼ U [0, 1] (px(x) = 1)
so that py(y) satisfies above the Eq.

Exponential distribution
py(y) = e−y

dx = e−y dy

→ x = −e−y → y = − log x

The exponential random distri-
bution can obtained by transform
with y = − log x where x is uni-
form random number.

Randoms obeying Normal dist.
py(y) =

1√
2π

e−
y
2

2

x =
1√
2π

∫ y

−∞

e−
y
2

2 dy =
1 + erf(y2 )

2

→ y = 2erf−1 (2x− 1)

erf−1 is not implemented in computers.
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Normal random number using Box-Muller method

Multi-dimensional probability distribution:

py(y1, y2, · · · ) dy1 dy2 · · · = px(x1, x2, · · · ) dx1 dx2 · · ·
= px(x1, x2, · · · )|J | dy1 dy2 · · ·

Assume x1, x2 are independent.
X1,X2 ∼ U [0, 1]
(px(x1, x2) = px(x1)px(x2) = 1)

{
y1 =

√
−2 log x1 cos (2πx2)

y2 =
√
−2 log x1 sin (2πx2)

(1)

x1 and x2 are







x1 = e−
y
2
1+y

2
2

2

x2 =
1
2π tan−1

(
y2
y1

)

|J | =
∣
∣
∣
∣
∣

∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣
∣
∣
∣
∣
=

1

2π
e−

y
2
1+y

2
2

2

=

(
1√
2π

e−
y
2
1
2

)(
1√
2π

e−
y
2
2
2

)

= py(y1)py(y2)

The pair (y1, y2) has Normal distribution
with N [0, 1], which is obtained by Eq. (1)
using a pair of (x1, x2) with U [0, 1].
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Convolution and Response Function

4. Convolution and Response Function

i(t) o(t)

i(x) o(x)
g

gtime

space

delay
relaxation

blur

o(t) =

∫
∞

0
g(τ)i(t − τ) dτ

=

∫ t

−∞

i(τ)g(t − τ) dτ ≡ g(t) ∗ i(t) ≡ (g ∗ i)(t)

o(x) =

∫
∞

−∞

g(ξ)i(x − ξ) dξ

=

∫
∞

−∞

i(ξ)g(x − ξ) dξ ≡ g(x) ∗ i(x) ≡ (g ∗ i)(x)

Since input is considered as reason, and output as result, the output is considered as integral of

the input.

The response does not depend on absolute time. It only depend on the time difference between

input and output.

The output is an integral of the product between input and weight depending time difference.

The difference of time and spatial domain is only the region of integral. (Causality)

※ The convolution is similar to the cross-correlation but sign of the argument is inverted.
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4.1 Convolution theorem

Convolution theorem
If o(x) is represented as a convolution of g(x) and i(x),

i(x) o(x)g(x)

I(k) O(k)G(k)

o(x) = g(x) ∗ i(x)
O(k) = G(k) · I(k)







F (k) =

∫

f(x) e−ikx dx

f(x) =
1

2π

∫

F (k) e+ikx dk

o(x) =

∫

ξ

g(ξ) i(x − ξ) dξ

O(k) =

∫

x

o(x) e−ikx dx

=

∫

x

(∫

ξ

g(ξ) i(x − ξ) dξ

)

e−ikx dx

=

∫

ξ

g(ξ)

(∫

x

i(x− ξ) e−ikx dx

)

dξ

=

∫

ξ

g(ξ)

(∫

x

i(x− ξ) e−ik(x−ξ) dx e−ikξ

)

dξ

(x′ = x− ξ)

=

(∫

ξ

g(ξ) e−ikξ dξ

)

·
(∫

x′

i(x′) e−ikx′

dx′
)

= G(k) · I(k)
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Response Function Response Function

4.2 Response Function

Sensor+PC

i

o

(i1)
(i2)

(i3)

(o3)G1 G2

G3

o1

o2

Object LensLens

on(r) =

∫

gn(ξ) in(r − ξ) dξ

= (gn ∗ in)(r) = in+1(r)

On(k) = Gn(k) In(k) = In+1(k)

o(r) = (gN ∗ (· · · ∗ (g1 ∗ i)))(r), O(k) =

(
N∏

n=1

GN (k)

)

I(k)

The response function of a whole system equals to the
products of response functions of each components.

When the response function in each system is known,
i(r) can be obtained from o(r).
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Measurement of Response function

Response func. of pin-hole
(i(r) = δ(r))

o(r) =

∫

g(r − ξ) δ(ξ) dξ = g(r)

O(k) = G(k)

o(r): Point Spread Function
O(k): Point Response Function

Response func. of slit (i(r) = δ(x))
ox(r): Line Spread Function
Ox(k): Line Response Function

Is there an ideal pin hole or slit?

Response of edge (ie(r) = θ(x))
(
θ : step func., dθ

dx
= δ(x)

)

oe(x) =

∫

gx(x− ξ) θ(ξ) dξ =

∫

gx(ξ
′) θ(x− ξ′) dξ′

doe(x)

dx
=

d

dx

∫

gx(ξ
′) θ(x− ξ′) dξ′

=

∫

gx(ξ
′)
dθ(x− ξ′)

d(x− ξ′)
︸ ︷︷ ︸

δ(x−ξ′)

d(x− ξ′)

dx
︸ ︷︷ ︸

=1

dξ′

=

∫

gx(ξ
′) δ(x − ξ′) dξ′ = gx(x)

Gx(kx) =

∫

gx(x) e
−ikxx dx =

∫
doe
dx

e−ikxx dx

=
[

oe(x) e
−ikxx

]∞

−∞
︸ ︷︷ ︸

=0 (∵oe(±∞)=0)

+ikx

∫

oe(x) e
−ikxx dx

= ikxOe(kx)

Oe(k): Edge Response Function
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Deconvolution Deconvolution

4.3 Deconvolution

A blurred image and the PSF of whole system is known.
→ F {Blurred} and F {PSF} are also known.

We wish to reconstruct the true image.

True

∗

PSF

=

Blurred

(IFT)↑↓(FT) (IFT)↑↓(FT) (IFT)↑↓(FT)
F {True} (log | · · · |)

•

F {PSF} (log | · · · |)

=

F {Blurred} (log | · · · |)

True’ = F−1

{F {Blurred}
F {PSF}

}

(Deconvolution)
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Example of reconstruction from blurred image

True

∗

PSF

=

Blurred

((IFT)↑↓(FT)) (IFT)↑↓(FT) (IFT)↑↓(FT)
F {Estimate} (log | · · · |)

•

F {PSF} (log | · · · |)

=

F {Blurred} (log | · · · |)

↓(IFT)
Deconvolved

In F {Blurred} /F {PSF},
it has a divergence if the
denominator is small.

↓
Since special treatments
are applied (discuss in later

days) to avoid divergence,
True 6= Deconvoluted








※ In this example,
it reconstructed only
from
the Blurred image,
i.e., PSF is also
unknown.








true image: http://www-2.cs.cmu.edu/~chuck/lennapg/lena std.tif
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