Generation of Random Noise Generation of Random Noise

3.6 Generation of Random Noise

Ideal Random Number: No periodicity — White Noise

@ Computer simulation: Random numbers are required for generation
of simulated noise. Normal rand. num. are required in many cases.

@ A function in most computers is only a series of Uniform Distrib.
Uniform Random number: X ~ U[min, max]
Implemented one in computer system is X ~ U[0, 1].

(X € [0,1] is generated and the probability to generating
them is same.

@ Methods to generate Normal Rand. from Uniform Rand.
» Sum of plural Uniform Random numbers.
» Coordinate transform of Uniform Random numbers
» Use of Multi-dimensional probability distribution function
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Generation of Random Noise

Generation of Random Noise

Probability of independent events

@ Random Variable: X
X € {z1,z9, -+ ,z,} (Discrete)
X € [Zmin, Tmax] (Continuous)

©

Probability Density Function: p(z)
Probability of X = x:
(In cont. system, p(x) dx.)

@ Cumulative Distribéjtion Function:
PX<zx)= p(x) dz
—00
(P(X <) =1)

Average (expected value) of X:
o0

©

T = / xp(z) dx
—o0
@ Average of function with X:

FX) = E[f(X)] = / " f@)ple) do

@ Variance of X:

ol=(x—-7)2 =

2 2

-7
T = [T sy
= /(ac2 — 227 +7°) p(z) dz

- / o2 p(e) do —27 / o p(e) de +72 / () do

—_—

=a2

@ Incident Prob. Dens. Func. for two
independent events:
p(x1,2) = p1(21) pa(z2)

> 1+ X2 =71+ T2

> o2

— 42 2
Zi4z2 = Oz + Oy

> T1T3 =71 T2
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Generation of Normal random distribution using sum of uniform random numbers

| Central Limit Theorem |
Sum of Random Variables which obey an independent distribution con-
verges to a Normal distribution.  (There are some exceptions.)

Ty =1 — 1

° X, ~U[0,1] — p(z)=1 " P m=r-m
1 1
@ Sum of two random number: /
F(z) =P (X1 + X2 <) :/ deydey 0/ 1w 0 1
r1tze<z T xr—1
Caseof 0 <z <1 1
F( ) /.’l? /asfml 4 4 IQ
T) = o dr) = —
21=0 Jp=0 T 08

Caseof 1l <z <2:

rz—1 1 "1 rr—w1 = ’
F(w)z(/ / +/ / )dwgdzl :
21=0 Jay=0 Jay1=2-1Ja9=0 04

=000~ U L NI

=)

PN ()
\
T

22
:f?JrZz—l 02
_ T (0<z<1) 0 » »
p(z)i{Q—z (1<z<2) 3 2 1 : 1 2 3
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Generation of Random Noise
e X, ~U[0,1] — p(z)=1

When N = 12,
12
A d Vari
@ Average an1 ariance . X — ZX" — 6~ N[O, 1]
E:/Iudmuzi . .on=l1 N .
0, is obtained as a Normal distribution.
ggu = (g — Tg)? day = 22 — T2 Nz, Ug] .
A :
=i-1=1 Normal distribution
N with average, T
e X = ZX“ with variance, o2
n=1
N
_ N 1 _(@=a)?
-Ym-g e
pz) = € ’
n=l 2 (@) 2moy
N
2 _ 2 _
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Generation of Random Noise

Arbitrary random distribution using coordinate transform

Coordinate change using y = f(x)
from P,(X < z) to Py(Y <y).

Py(x) y=flx) Pyy)
1 1
|ap /
/ f 7
0 i z 0 / - y
Tmin Tmax Ymin Ymax
AP = p,(x)dx AP = py(y)dy

Pz () dr = py(y) dy

We can obtain the transformation
f(z) from X ~ U[0,1] (pz(z) =1)
so that p,(y) satisfies above the Eq.

@ Exponential distribution

py(y) =e¥
dr =eYdy
—szx=—-€Y—>y=—logz

The exponential random distri-
bution can obtained by transform
with y = — log x where x is uni-
form random number.

@ Randoms ?beyn;g Normal dist.
py(y) = \/ie
_ 1+ erf(%)

o W/ 2
—y=2erf” 1(23371)

erf ! is not implemented in computers.
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Normal random number using Box-Muller method

Multi-dimensional probability distribution:

Py (Y1, Y2, - )dyrdya - - = pu(x1, 22, -+ ) dry dag - - -
= pg(z1, 22, )| | dy1 dya - - -

Assume x1, x5 are independent.

Oz1 Oz 2
0, X~ U10.1] |J|=‘ on o ':ie
(pz (21, 72) = pa(w1)pa(w2) = 1) . oy | 27
J/ITo T cos ( ) ( 1 4 1 _
y1 = v —2log 1 cos (2mxs =|—e 2 e 2
{ y2 = v/—2log 1 sin (27x9) (1) V2n V2T
= py(y1)py (y2)

x1 and xo are

0 9 The pair (y1,y2) has Normal distribution
S TR with N[0, 1], which is obtained by Eq. (1)
using a pair of (z1,x2) with U0, 1].
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Convolution and Response Function

4. Convolution and Response Function

| N ot) = /0 ¥ )it — ) dr

e 6 % ~ [ it —rdr =90 +i) = =)0

delay
relaxation

| A o) = [ Zg(ﬁ)i(w—ﬁ) e

e o——] 9 |0 = [ i€t — € de = gta) i) = 9+ (o)

blur —oo

@ Since input is considered as reason, and output as result, the output is considered as integral of
the input.

@ The response does not depend on absolute time. It only depend on the time difference between
input and output.

@ The output is an integral of the product between input and weight depending time difference.

@ The difference of time and spatial domain is only the region of integral. (Causality)

> The convolution is similar to the cross-correlation but sign of the argument is inverted.

64 /197



Convolution theorem

4.1 Convolution theorem

Convolution theorem

Convolution theorem

If o(x) is represented as a convolution of g(z) and i(x),

i(x) g9(x)
I(k) G(k)

o(k) =

/a;o(w) e—ike g
/z (/{g(é) i(r — &) d&) omike g
[t ([ite =gt ar) ae

/s o (/ ile—ge ™ do ef“‘é> de

)

65 /197



Response Function

4.2 Response Function

Sensor +PC

Object Lens : Lens IEI
() >
i G i I o Gs (03)

o(r) = (gn * (- * (91 %4)))(7),

Response Function

on(r) = / G (€)in(r — €) de

= (gn *in)(r) = ins1(r)
On(k) = Gn(K) In(k) = Int1(K)

N
O(k) = (H GN(k)> I(k)
n=1

@ The response function of a whole system equals to the
products of response functions of each components.

@ When the response function in each system is known,
i(7) can be obtained from o(r).
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Measurement of Response function

@ Response func. of pin-hole

(i(r) = ()
o@)=/g&—£ﬁ@ﬂ£:ﬂﬂ
O(k) = G(k)

o(r): Point Spread Function
O(k): Point Response Function

@ Response func. of slit (i(r) = 6(z))
05 (7): Line Spread Function
O.(k): Line Response Function

Is there an ideal pin hole or slit?

@ Response of edge (ie(r) = 0(x))
(60 : step func., £ =5(x))

§ds = [ ()0

(x—¢)de

ngE—

%?=i/mm

df(z —¢) dz—¢)
d(z —¢) dx
—_—

d
/
/ =1
= o1 €t = g
/91(90) e ket g — /i;; etk g0

= [Oe(z) e—ikzz] (io—t-ikz/oc(x)
—_——

=0 (. 0e(F00)=0)
= ikyOc(ky)

)
By
8
=
\

9:(&) ¢’

e~ gy

Oc(k): Edge Response Function
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Deconvolution Deconvolution

4.3 Deconvolution

A blurred image and the PSF of whole system is known.
— F {Blurred} and F {PSF} are also known.
We wish to reconstruct the true image.

?l

(IFT)TL(FT) (IFT)TL(FT) (IFT)TL(FT)
F {True} (og - F{PSF} (logl--]) F {Blurred} (o)
.7-" { BIurred}
True' = _— Deconvolution
FA{PS F} ( )
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Convolution and Response Function

Example of reconstruction from blurred image

True

In 7 {Blurred} /F {PSF},
it has a divergence if the
denominator is small.
+
Since special treatments
are applied (discuss in later
days) to avoid divergence,
True # Deconvoluted

((IFT)TL(FT)) (FT)TL(FT) (IFT)PL(ET)
F {Estimate} (o) F {PSF} (e ) F {Blurred} (o

X In this example,
it reconstructed only
from
the Blurred image,
i.e., PSF is also
unknown.

true image: http://www-2.cs.cmu.edu/"chuck/lennapg/lena_std.tif
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