
Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

1.2 Discrete Fourier Transform (DFT)
(
In exact, “Discrete Fourier Series
Expansion”.

)

f ′(x) =

∞∑

m=−∞

F ′

km
eikmx (4)

F ′

km
=

1

L

∫ L

0
f ′(x)e−ikmx dx (5)

km = m
2π

L
(15)

Consider the case when f(x) is
sampled with even intervals.

(n = 0, 1, · · · , N − 1)

fn ≡ f ′(xn), xn ≡ n∆x














Represent integral by summation:
∫ L

0
· · · dx ≃

N−1∑

n=0

· · · ∆x

(L = N∆x)

→ F ′

km
≃

1

L

N−1∑

n=0

fne
−ikmxn∆x














fn =
N−1∑

m=0

Fme+i 2πnm
N (16)

Fm =
1

N

N−1∑

n=0

fne
−i 2πnm

N (17)
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Periodicity of Fm and fn

Fm′ =
1

N

N−1∑

n=0

fne
−i 2πnm′

N (17)

Replacing m′ = m+N

Fm+N =
1

N

N−1∑

n=0

fn e
−i

2πn(m+N)
N

=
1

N

N−1∑

n=0

fn e
−i 2πnm

N e−i2πn
︸ ︷︷ ︸

=1

= Fm

Fm has a periodicity.

Fm±N = Fm (18)

fn′ =

N−1∑

m=0

Fme+i 2πn′m
N (16)

Fm also has a periodicity.

fn±N = fn (19)

We can choose any set of N
points for m in Fm or n in fn, if
the point is not a periodic points
of others.
However, we must consider the
sampling theorem for interpola-
tions.

15 / 197



Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

Sampling Theorem

Signal consist of single sinusoidal func-
tion:

fm(x) = Fmeikmx (km = 2π
Lm

)

In order to observe oscillation with a pe-
riod Lm, two points are needed within
Lm.

Sampling Theorem

∆x ≤
Lm

2

km ≤
π

∆x
(Nyquist Freq.)

(20)

Lm

x

8 pts
∆x =

Lm

8

4 pts
∆x =

Lm

4

2 pts
∆x =

Lm

2

1 pt
∆x = Lm

Oscillation cannot be ob-
served, with ∆x = Lm.
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Sampling Theorem and Aliasing
Case of m = 3 :

x

x

x

L

Lm = L

3

∆x = L

24 = Lm

8 < Lm

2

∆x = L

4 = 3Lm

4 > Lm

2

Fine sampling (N = 24)

Coarse sampling (N = 4)

∆x >
L

2
→ Different sinusoidal

function is observed. → Aliasing








Freq. of true signal:

km = m
2π

L
Freq. of spurious signal:

k′m = (m−N)
2π

L
= km−N









If the sampling interval is∆x, the signal

with km >
π

∆x
cannot be observed.

→Sampling Theorem
In this condition, the aliased signal with
the following frequency is observed.
−π

∆x
≤ km′ = km−N ≤

π

∆x
(|m−N | ≤ N/2)
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Relation of domains and intervals between real and Fourier
spaces

{
L = xmax − xmin = N∆x (fn = fn±N)
K = kmax − kmin = N∆k (Fm = Fm±N )







Sampling Theorem: |k| <
π

∆x

Symmetry of k
(kmin = −kmax)

(

kmax = −kmin =
π

∆x

)

K = kmax − kmin =
2π

∆x

∆k =
2π

xmax − xmin
=

2π

L

(
Real
space

) (
Fourier
space

)

∆x
Reciprocal
⇐⇒

(Prod.=2π)
K

×N ⇓ ⇑ ×N

L
Reciprocal
⇐⇒

(Prod.=2π)
∆k
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Summary of DFT

FT of signal with discrete sampling (num. of samp.=N)

fn =
∑

m

Fmeikmxn

(xn=n∆x)

FWD
−−→
←−−

INV
Fm =

1

N

∑

n

fne
−ikmxn

(km=m∆k)

Suffixes n and m of fn and Fm have periodicity with the period N .

In the computation of fn and Fm, arbitrary set of m and n has same
result because of this periodicity. (eg. n,m = {0, · · · , N − 1}, or

n,m = {⌊−N/2⌋, · · · , ⌊N/2− 1⌋})

However, if m of Fm is |m| > N/2, m should be shifted into
|m| ≤ N/2 to satisfy sampling theorem.

Interpolation
Once Fm is obtained, we can evaluate f(x|x 6= n∆x) by inverse trans-
form. In this case, m must satisfy the sampling theorem. Otherwise,
the interpolated function shows an aliasing function.
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Techniques to compute DFT

Fm =
1

N

N−1∑

n=0

fne
−i 2πmn

N (17)

In a simple computation,
most of computational cost is
consumed to evaluate
exponential function e−i 2πmn

N .

To evaluate all of Fm, N2

times evaluations are needed.

Argument of exponential
function
mn

N
=

⌊mn

N

⌋

︸ ︷︷ ︸

Integer

+
1

N
(mn)%N
︸ ︷︷ ︸

Fraction

mn%N ∈ {0, 1, · · · , N − 1}

Since ei2lπ = 1 for l ∈ Z,
e−i 2πmn

N = e−i
2π(mn)%N

N .

If we evaluate W p = e−
i2π
N

p

for p ∈ {0, 1, · · · , N} at the
first, the number of times for
exponential evaluations is only
N .








When we use this table, the time to
compute multiplication governs the
computational time.
The scheme to reduce the num.
of times for multiplication is called
FFT.







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Window function

Sinusoidal signal: fxn = cos k1xn

Case of fx0 = fxN

|Fkm | =
1
2 (δm,n + δ−m,n)

Case of fx0 6= fxN

|F (k)| spreads around k1.

◮ Reason:
Assumed periodicity.

◮ Solution: Multiply window
function w(x) so that the ends
becomes continuous.

f ′(x) = w(x)f(x)
◮ example of the window function:

w(x) = 1
2

(

1 + cos 2π(x−xc)
L

)

(x ∈ [xc − L/2, xc + L/2])

L

L

L

L

x

f(x)

f(x)

w(x)

k

|F (k)|

kmax

kmax

kmax

kmin

kmin

kmin

k1

k1

k1

−k1

−k1

−k1
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Two-dimensional DFT

Fmx,my =
1

NxNy

Nx−1∑

nx=0

Ny−1
∑

ny=0

fnx,nye
−i

(

2πmxnx
Nx

+
2πmyny

Ny

)

(21)

To evaluate all Fmx,my (NxNy)
2 times multiplication are needed. (4 loops)

(
Exchange the order
of operators

) Fmx,my =
1

Nx

Nx−1∑

nx=0







1

Ny

Ny−1
∑

ny=0

fnx,nye
−i

2πmyny

Ny







︸ ︷︷ ︸

=Gnx,my

e−i 2πmxnx
Nx

Gnx,my =
1

Ny

Ny−1
∑

ny=0

fnx,nye
−i

2πmyny

Ny , Fmx,my =
1

Nx

Nx−1∑

nx=0

Gnx,mye
−i 2πmxnx

Nx

{
Gnx,my

Fmx,my

}

is the FT of

{
fnx,ny

Gnx,my

}

with
{
my
mx

}

. The num. of multi. for all is

{

NxN
2
y

N2
xNy

}

.

Total num. of operation is reduced to NxN
2
y +N2

xNy times. (3 loops for each step. 2 steps.)
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