Computed Tomography (CT) Absorption of X-ray

9. Computed Tomography (CT)
9.1 Absorption of X-ray

o X-ray radiography o If K is depth dependent,
oj ect
kd — k(x,y)dz
Pp— s / (z,y)
K
—>/ k(z,y)d
Incident [—] Transnitted
d (k(z,y) =0 Not Object)

@ Only the integral of x along

@ k : attenuation coefficient optical path can be obtained
In the case of X-ray, from X-ray radiography.
it depends on the atomic
number.

(Heavy atom — large &.)
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Computed Tomography (CT)

Projection from several directions

9.2 Projection from several directions

The distribution of k including depth
distribution, which is called tomog-
raphy, can be obtained from several
projected data with different direc-
tions.

U
Computed Tomography
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Computed Tomography (CT) Projection from several directions

Number of projections and Num. of internal nodes

U

U L
3x3 unknowns |:> j} |:> j}
I )

[> 3 projs.
(observed)

—— ——
Num. of unknowns = Num. of Obs.
— Cannot distinguish.

——+—+
3 projs.
(observed)
Num. of unknowns > Num. of Obs.

— Cannot solve.

To obtain more projection, other projections with different directions are
needed.
6 € [0,7]
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Computed Tomography (CT) Schematic of forward and backward-projection

9.3 Schematic of forward and backward-projection

Forward projection (measuring process)

Forward projection
=lIntegral along beam path
p(,60) = [, w(w,y) dng
(z=2(£,0), y=y(&,0))

— Accumulate along path

0 [100] 0 —
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Computed Tomography (CT) Schematic of forward and backward-projection

Backward projection (1) Simple backprojection

© Map averaged value of the
projection data along path for

each angle.

@ Take an average of mapped
data for each pixel.

8|8 s
s 3]s | <——
8|8 s

Blurrier than original.
Original
0100

0 |100| 0O

01010
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Computed Tomography (CT) Schematic of forward and backward-projection

Backward projection (2) Filtered backward projection

In the simple backward projection, the reconstracted result is blurred. To
reduce the blurring, edge enhancement filter is applied to the projection
data.

Edge enhancement filter

gn = fn—kfy +1
= fn - k(fn—l — 2fn + fn+1) In = i:Z_I wifn—i

= _kfn—l + (Qk + 1)fn B kfn—l—l (w_l,wo,w+1) = (_L +37 _1)
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Computed Tomography (CT) Schematic of forward and backward-projection

Filtered backward projection

© Edge enhancement of
projection data: p’

+1
(eg) P = D WiPj—i

i=—1

(w—l)w()aw-l—l) = (_17 3’ _1)
p] 0 [100] 0
p’ | -100 | 300 | -100

@ Apply simple backward
projection using p’.
0 |100] 0 <:

In this example, the reconstructed
field is identical to original.
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Computed Tomography (CT)

9.4 Radon Transform

Radon Transform

Coordinate system

Iy(€,6) Inner product of e, :
Tez-extyeg-ey

:Eex'eﬁ"_nex'en

Yy

n

x=~¢cosf —nsind

x=+Ecosf —nsind
y = +&£sinf + ncos b
&= +xcosf+ ysinh
n=—xsinf + ycosh

Expression of point 7

r=xe;tyey

=fect+ney
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Computed Tomography (CT)

Radon Transform

@ Projected data (known)

I(Ea 9) = IU e fL K(r)dl
Le{r(&n;0)|&=¢(const)}

e Sinogram (known)

p(§.0) = —log I(i—;”

@ Radon Transform
Integral over straight line in
2-D space.

p(£.6) = /L w(r(€.0)) dI

Radon Transform

o Extend from line in-
tegral to 2-D area
integral
& =xcosf+ysind

/[...}dl:/5 g/[,,,]dn

o(§ — &) d€’ dn

)
/Z/w
:/

5(€ =& (z,y)) du dy

oo

— (zcosf +ysinb)) de dy
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Computed Tomography (CT) Projection slice theorem

9.5 Projection slice theorem

e Projection (Sinogram)

p(&,0) // k(z,y)0(§ — (xcosf + ysinh)) dx dy (1)

o FT with respect to &

P(ke,0) /// k(z,y)0(§ — (xcosh + ysinh))e TRe do dy d¢
://K(x’y)e—]kg(xcosﬁ—kysinﬂ) da:dy (2)
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Computed Tomography (CT) Projection slice theorem

2-D Fourier Transform in polar coordinate system

@ Forward transform

Fkg, k) = //f(m,y)e_j(k”"'kyy) dedy — (ky =kcosd, k= ksing)
= [ [ s eestrming qu gy = (10) (3)
o Inverse transform
fl@,y) = 41? / / Fky, ky)etIFamtht) qpe dle, (ffar,dr, = [5° 2 kdoar)

1 oo 2w ) )
_ 4_772/0 /O F/(k’e)e—&-]k(xcosﬁ—&-ysme) k do dk (4)
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Computed Tomography (CT) Projection slice theorem

Eq. (2) and Eq. (3) are same.

Projection Slice Theorem

P(k¢,0) is expressed by Fourier transform of x(x,y) in polar
coordinate system.

Since P(kg,0) is known, r(z,y) is obtained by the inverse FT using (4).

1 oo 2T ) )
li($7y) = 4—7_(2/0 /0 P(k&9)e+]k€(rcos6'+ysm6') kﬁ do dkﬁg (5)
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Computed Tomography (CT) Projection slice theorem

Projection from opposite direction

1 oo 2 ) .
n(x7y) = m/0 /0 P(k&0)e+]k§(zc059+ysm0) kE do dk&

1 00 T ] ]
_ P +jke(x cos 0+ysin ) k 0 dk
| [ Pl el df i

oo p2m oo pm oo 21
/ ke dO dke = / / ke d6 dke + / ke d6 ke
0 0 0 0 0 Jr

Projection from opposite direction

p(€> 6 + 7T) = p(7£7 9)
(=) ( Pl 0% 7) = P(—ke, 0)

6+jk§(zcos(0¢7-r)+ysin(91‘rr)) — e*jkg(zcosé’ersinG) )
2nd Term = / / Pke, 0)etihel@eos0tysindp g dke (0" =0 —7)
0

"2
Jmr

fo.o] us
_ A /O P(_k&gl)e—jké(xcos9’+ysin€/)k5 a0’ die (Aé _ 7}{){)

_ O_OO /07r P(k,éy0/)€+jké(zc059'+ysin9’)(7]&,/5) 40’ (7(11&%)
_ 0 B P(ké0/)8+jk2(10059'+ysin9')‘kél a0’ dké

—o0 J0
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Computed Tomography (CT) Reconstruction by using Fourier transform

9.6 Reconstruction by using Fourier transform

€

—
1 oo T . .
r(z,y) = 74 2/J Plke, 0)e ke (@ cosO+ysing) | g g,

/ Pke, 0)|ke] e*7%<S dke df = . l/ a(&(z,y),0)do
T Jo

=Fie {P (ke 0)lIel}=a(6.0) Average with 6.

27T0

o .
(€).0) = [ [Plhe O)kel okl 0 g
—0o0

K(z,y) = % <]:k;_51 {]-'g {p(&,0)} H(kg)}k >

€/
H(ke) = |ke| in the case of Ramp function
3 3
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Computed Tomography (CT) Reconstruction by using Fourier transform

@ Sinogram :
p(£,0)

@ FWD FT with & : -
Pke.6) = / p(€, 0)eIVE dg

@ Filtering (Weight with |k¢|) :
kel P (ke 0)
Q INV FT with k :
1 [ ,
al6.0) = 5= [ Ple,0)kele™ "5 ai
T

—00

@ Backward projection (Coordinate transform and integrate with 6) :

1 ™
k(z,y) = %/0 q(zcosf+ysind,0)do

Two FT (FWD and INV) are needed for a certain 6.
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Computed Tomography (CT)

Filtered Back-Projection

o Before IFT, |k¢| is multiplied.

e Since this factor |k¢| is considered as
a filter in the spectral domain, the
method based on FT is called

Filtered Back-projection (FBP).

@ In the actual computation,
ke € [—00,00] = [—Kmax; +Fmax]-
@ kmax is Nyquist frequency
determined by sampling interval.

Reconstruction by using Fourier transform

@ To avoid ringing artifact caused by
high frequency component, another
filter can be applied.

(e.g. Shepp-Logan filter)

2k | Tk
H(ke) = —sin ¢
2kmax
Ramp filter
—— Shepp-Logan filter
Finax
0
—Kinax 0 +Eimax
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Computed Tomography (CT)

Handling of discrete data

° p(&%om) = p(nAﬁ,mA@)

(n,m) : Integer

o r(xi,yj) = K(IAZ, JAY)  (i,j): Integer

io e

oedl

@ In order to evaluate
q(x cos + ysinb, ) from q(&,,0)
interpolation are needed.

Reconstruction by using Fourier transform

eg. (I

q(&,.0)

nterpolation for &)

q(xcosh +ysinb,0)
\ q(frl,Jth)

3

gn,

£n,+l
xcost +ysind
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Computed Tomography (CT) Reconstruction by using Fourier transform

Reconstruction using convolution

c(z) = [ a(z")b(z — 2') da’ 1 e
{ C(k) = A(k)B(k) } & o) = §/A(k)3(k)e+ ke g

kmax i Emax
q@ﬁﬁvL/ m@ﬁmwﬁﬁww@zj' P(€. (e — &) de’

2 Emax

h(e)
o If H(ke) = |kel,
we =5 [ " el ke ai
LY ¢
1 ’v\/ "\/v 5 ¢/ac
%k?nax (§ = 0)

%kn?x s (bn) + g7 (05(hmac) = 1) (¢ £0)

kmax

|Subtract by neighbors ‘ & | Edge Enhancement
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Computed Tomography (CT) Reconstruction by using Fourier transform

@ Sinogram : p(&,0)
@ Convolution :

a(6.0) = [ 9l O)hie ~ ) e
() Back—projection;r

1
k(z,y) = %/0 q(zcosf +ysinb,0)do

(p’.q’ : contrast is enhanced to display )

Only one convolution for each 6. (erf(1/o))
No FT.
Number of multiplifications for each 6
Fourier DFT X 2 2N?
transform FFT X 2 2N log N
Convolutinal | All points N?
integral Neighboring M pts. (M < N) MN

— Faster computation than DFT, if the convolution
is applied to neighboring points only.
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Computed Tomography (CT) Reconstruction by using Fourier transform

Filtered Back-projection and Simple BP

o Filtered Back-Projection

o) = 3 (F R e oo}, )

/0

e Simple Back-projection

H(k) =1
wlon) =5 (7 {Fetoieo)e), ) =5 wieon
- [ e
T Jo

» No need to FT— Fast
» The reconstructed distribution is blurred.

— Iterate two procedures of projection and back-projection.
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Computed Tomography (CT) Iterative Reconstruction

9.7 lterative Reconstruction

Applying the forward projection (FP)
to the reconstructed field obtained by
the backward projection (BP), we can
evaluate the error.

The BP of the error is added to the
field obtained in the previous step.
The simple BP is used for the BP al-
gorithm, since the simple BP is fast.

(1) BP for the proj. : k= B{p°ts}

(2) FP for the field s p1 = F{k1}

(3) Under-estimation : Apy = pO —py

(4) BP for the under-est. : Axy = B{Ap1} a : Relaxation factor for

(5) Update the field D Kg = K1 + @Ak ( Stabﬁiecszt{uaion >
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Computed Tomography (CT) Iterative Reconstruction

Simple Back-projection

e Sinogram
p(&ny Om) = / k(z,y)dl ~ k(z,y € Lpm)Alpym
L

- 0,
— k(z,y € Lpm) = Z% (Alnm = / dl)

e Fraction of projection is mapped onto the internal distribution.
5’”7 m)
:L'z’yj ZZ ,]nm Al
nm

i jn,m : Overlap area fraction between the pixel (z;,;)
and the beam L, with width A¢.
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Computed Tomography (CT) Example of reconstruction by simulation

9.8 Example of reconstruction by simulation

True k(z,y) Filtered Back-Projection (Filter : Ramp function)

k(z,y) D2 Ar(z,y) |

,+0.2]

Sinogram p(§,0)

k(z,y) €10,2],

N, = N, = 100, |Ak||2 = /(AK?) =
Ne = 100, . _
Np = 45(A0 = ddeg) Line artifact
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Computed Tomography (CT)

True k(z,y)

Sinogram p(&,6)

r(z,y) €10,2],

N, = Ny, = 100,
N¢ = 100,

Ny = 45(A0 = 4deg)

Example of reconstruction by simulation

Iterative reconstruction
N=1 N =2

|| Ak|]y = 0.42

[|Akll2 =0.25  ||Ak||2 = 0.17

Reduction of edge blurring

[|Ak|l2 = 0.11
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