7. Simple filter for image using convolution7.1 Smoothing using Moving Average

$$g_{i,j} = \sum_{m,n} w_{m,n} f_{i+m,j+n}$$
 $m, n \in -N, \dots, N, \quad N_m = 2N+1$

size	Simple ave.	Square pyramid	circular	Gaussian like				
3×3 $\binom{N_m = 3}{N = 1}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
5×5 $\binom{N_m = 5}{N = 2}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				

7.2 Smoothing using Non-linear Filter

Since the moving average losses higher frequency component, edges and corners in the original image are blurred.

f_{i+i}	m, j -	-n				
0	0	9	9	9		ı
0	0	9	9	9		
0	0	9	9	9	Ť	
0	0	18	18	18		
0	0	18	18	18		

	w_{m}	n,	
	1	1	1
*	1	1	1
	1	1	1
	т	T	1

	$g_{i,j}$				
	0	3	6	9	9
	0	3	6	9	9
_	0	4	8	12	12
	0	5	10	15	15
	0	6	12	18	18

- Median filter Reducible the blurring edges
- Adaptive local averaging filter
 Reducible the blurring

corners

Note:

These filters are *irreversible*.

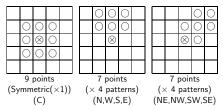
Median Filter

Replace the pixel value at the central pixel in partial region by the median in the region.

$f_{i,j}$	sort and select median								Re	duc	tion	of	blur	ring	of e	dge	s.			
1 3 4	-	○: 1,	1, 2		<u>4</u> , 1edia		5, 6, 8		Inp	ut:	0	0	0	0	0	-				
4 5 (95	□: 4.	4, 5		icula						0	0	9	9	9					
6 5 8	§ 6 6				. 4-	-5	= 4.5				0	0	9	9	9					
1 2 7	7 5 7		Median: $\frac{4+5}{2} = 4.5$								0	0	9	9	9					
1 2 8	3 4 4		\downarrow								0	0	18	18	18					
$g_{i,j}$		1	$g_{i,j}$								0	0	18	18	18					
3.5 2.5	4 2.5 4		*	*	*	*	*		Mo	ving	· A.	era	Te		Me	dian	EI	tor		
4.5 4 5	5 5 5.5		*	4	*	*	*		0	3	6	9	9		0		9	9	9	
4.5 5 5	5 6 6	⇒	*	*	*	*	*		ů O	3	6	9	9		0	0	9	9	9	
2 5 5	5 6 5.5		*	*	*	*	*		0	4	8	12	12		0	0	9	9	9	
1.5 2 4	5 6 4.5		*	*	*	*	4.5		0	5	10				0	0	9	18	18	
		-	L						0	6	-	13			0	0	18	-	18	
									U	0	12	18	18		0	U	10	10	10	

Adaptive Local Averaging Filter

Sampling patterns:



- Evaluate variance for each pattern. $\sigma^2_{(p)} \qquad (p \in \{\text{C, N,W,S,E, NE,NW,SW,SE}\})$
- $g_{i,j}$ is taken as the average $\overline{f_{i,j}^{(p)}}$ with minimum variance $\sigma_{(p)}^2$.

Reduction of blurring of edges.													
Inp	Input Moving Average												
0	0	9	9	9		0	3	6	9	9			
0	0	9	9	9		0	3	6	9	9			
0	0	9	9	9		0	4	8	12	12			
0	0	18	18	18		0	5	10	15	15			
0	0	18	18	18		0	6	12	18	18			
Me	dian	Fil	ter			Ada	ipt.	Lo	cal /	Ave.			
0	0	9	9	9		0	0	9	9	9			
0	0	9	9	9		0	0	9	9	9			
0	0	9	9	9		0	0	9	9	9			
0	0	9	18	18		0	0	18	18	18			
0	0	18	18	18		0	0	18	18	18			

7.3 Remove defect pixel

- Defect pixel : Pixels with $f_{i,j} = 0$ or $f_{i,j} = 255$ (Max.)
- Reason : Difference of gain between pixels.
- Apply the Median filter to only the defect pixels.

Original

Median for N whole image

Median for defect pixel

defects

smoothed

removed Not smoothed

7.4 Edge detection

Edge: Points having local maximum of the gradient $(|\nabla f|)$.

Edge detection by gradient

Derivative

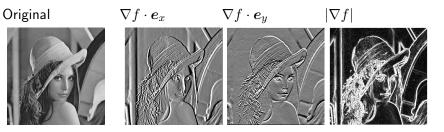
$$\frac{df}{dx} = \lim_{\Delta \to 0} \frac{f(x + \frac{\Delta}{2}) - f(x - \frac{\Delta}{2})}{\Delta}$$
$$= \lim_{\Delta \to 0} \frac{f(x + \Delta) - f(x - \Delta)}{2\Delta}$$

• Difference($\Delta \neq 0$)

$$\frac{\Delta f}{\Delta x} = \frac{f(x+\Delta) - f(x-\Delta)}{2\Delta}$$
$$= \frac{1}{2}(f_{i+1} - f_{i-1})$$
$$\frac{df}{dx} \simeq \frac{\Delta f}{\Delta x}$$

$$g_{i,j} = \sum_{m,n} w_{m,n} f_{i+m,j+n} \quad \begin{pmatrix} m, n \in -N, \dots, N \\ N_m = 2N+1 \end{pmatrix}$$
Example of $w_{m,n}$
• $\nabla f \cdot e_x$
• $\nabla f \cdot (e_x + e_y)$
• $\nabla f \cdot (e_x + e_y)$
• $\nabla f \cdot (e_x - e_y)$
• $\nabla f \cdot e_y$
• $\nabla f \cdot (e_x - e_y)$

Example of Edge detection

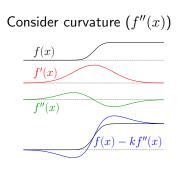


- $\nabla f \cdot e_x$, $\nabla f \cdot e_y$ embosses image.
- By ∇f · e_x, the vertical edge can be detected, but horizontal one cannot.
- $|\nabla f|$ is useful for edge detection.

|
abla f| (inverted)

7.5 Enhancement of Edge

Using Laplacian

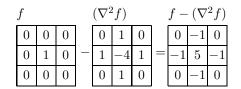


Enhancement of Edge :

$$g(\mathbf{r}) = f(\mathbf{r}) - k \nabla^2 f(\mathbf{r})$$

Second derivative • 1-dim. $f''_{i} = f'_{i+1/2} - f'_{i-1/2}$ $= f_{i+1} + f_{i-1} - 2f_{i}$ • 2-dim. Laplacian($\nabla^2 f$) $f''_{i,j} = f_{i+1,j} + f_{i-1,j} + f_{i,j+1} + f_{i,j-1} - 4f_{i,j}$)

In the case k = 1,

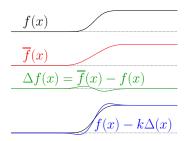


Example of Edge Enhancement(using Laplacian)

Smoothed Enhance(k = 2) Enhance(k = 4) Original

Using diff. from Smoothed

Consider diff. from smoothed one $(\overline{f}(x) - f(x))$



Enhancement of Edge : $g(\mathbf{r}) = f(\mathbf{r}) - k\left(\overline{f(\mathbf{r})} - f(\mathbf{r})\right)$ $= (1+k)f(\mathbf{r}) - k\overline{f(\mathbf{r})}$ In the case k=1 and 3x3 simple ave., $g=2f-\overline{f}$

2f				\overline{f}			$2f - \overline{f}$			
0	0	0		$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		$\frac{-1}{9}$	$\frac{-1}{9}$	$\frac{-1}{9}$
0	2	0	—	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	=	$\frac{-1}{9}$	$\frac{17}{9}$	$\frac{-1}{9}$
0	0	0		$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		$\frac{-1}{9}$	$\frac{-1}{9}$	$\frac{-1}{9}$

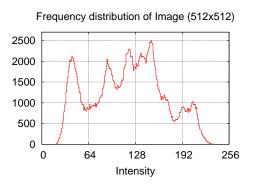
Enhancement of Edge

Example of Edge Enhancement(using diff. from smoothed)

Smoothed Enhance(k = 2) Enhance(k = 4) Original

7.6 Frequency distribution (Histogram)

 ${\sf Histogram} \quad \rightarrow \quad {\sf Used \ for \ binarizing \ or \ labeling}$



In this example the thresholds are about 64, 100, 126, 180.

Binarizing

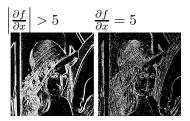
7.7 Binarizing

Binarizing : Distinguish either true or false of a condition 1: True, 0: False

- Comparison with threshold e.g. $f(x,y) \geq f_{\rm th}$
- Solutions (Points) of equations e.g. f(x,y) = a

$$\label{eq:solution} \underbrace{ \begin{array}{l} \mbox{Solution of } f(x,y) = a \\ (f(x,y)-a) \cdot (f(x',y')-a) \leq 0 \\ ((x',y') \mbox{is adjacent pixels of } (x,y)) \\ \mbox{In the case of 4 direction search:} \\ \hline \hline + + + + + + \\ \hline \oplus \oplus \oplus + + + \\ \hline \odot \odot \oplus + \\ \hline - - \odot \oplus + \\ \hline \end{array} }$$

 $f \ge 128 \qquad f = 128$



7.8 Partitioning

Partitioning by Edge

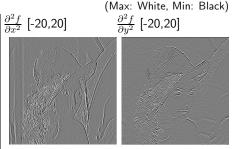
Edge: Points with local max. of $|\nabla f|$.

 \rightarrow Solution of $\nabla^2 f = 0$?

$$\begin{pmatrix} \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \\ \text{Even if } \frac{\partial^2 f}{\partial x^2} \neq 0 \text{ and } \frac{\partial^2 f}{\partial y^2} \neq 0 \text{ ,} \\ \text{in the case of } \frac{\partial^2 f}{\partial x^2} = -\frac{\partial^2 f}{\partial y^2}, \\ \nabla^2 f = 0. \quad \rightarrow \times \end{pmatrix} \\ \therefore \mathbf{r} = \Big\{ (x, y) \Big| \frac{\partial^2 f}{\partial x^2} = 0, \ \frac{\partial^2 f}{\partial y^2} = 0 \Big\}$$

However, this is also inappropriate.

: The second derivatives have high frequency component, there are many zeros.



$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = 0$$

$$\begin{pmatrix} = 0 : \text{White} \\ \neq 0 : \text{Black} \end{pmatrix}$$

Improvement of the solution search algorithm

Methods to find the sol. of $\frac{\partial^2 f}{\partial x^2} = 0$.

- Simple search $f''_i \cdot f''_{i+1} < 0$ or $f''_i \cdot f''_{i-1} \le 0$ \rightarrow Broaden
- Use of average of half shifted points.

$$\begin{split} f_{i+1/2}'' \cdot f_{i-1/2}'' &\leq 0 \rightarrow f_i'' = 0 \\ \left(f_{i\pm 1/2}'' = \frac{f_i'' + f_{i\pm 1}''}{2} \right) \\ &\rightarrow \text{This can avoid} \\ \text{broadening.} \end{split}$$

Solution is improved. However, it remains many solutions because of higher freq. components.

 \rightarrow Coupling method with other methods is required.

Edge detection by $|\nabla f|$

Edge: Points having local maximum of the gradient $(|\nabla f|)$.

 \implies Points having large gradient.

Problem :

- Appropriate threshold $|\nabla f| > |\nabla f|_0$
- Broaden edges
 - Use with the second derivative.
 - Use of variance of gradient.

 $\begin{aligned} \frac{\text{Variance of gradient}}{\overline{\nabla f} = (\overline{f'_x}, \overline{f'_y})} \\ \sigma^2_{\nabla f} = \sigma^2_{f'_x} + \sigma^2_{f'_y}, \quad \widehat{\sigma}_{\nabla f} = \frac{\sigma_{\nabla f}}{|\nabla f|} \end{aligned}$

Condition of edge: $|\nabla^{f}| > |\nabla^{f}|$

• $|\nabla f| > |\nabla f|_0$ • $\hat{\sigma}_{\nabla f} < \hat{\sigma}_{\nabla f 0}$

•
$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = 0$$

Example of Edge detection by $|\nabla f|$

$$\begin{split} |\nabla f| \geq 8, & |\nabla f| \geq 8, \\ f_{'x'x} = f_{'y'y} = 0 & \sigma_{\nabla f} / |\nabla f| \leq 0.7 \end{split}$$

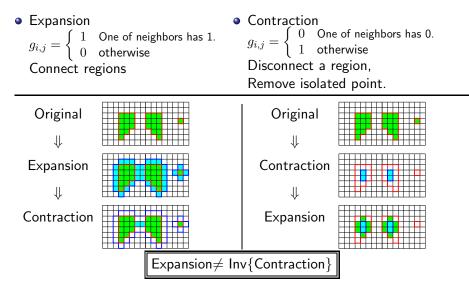
$$\sigma_{\nabla f} / |\nabla f| \le 0.7, \quad \sigma_{\nabla f} / |\nabla f| \le 0.7, \quad \sigma_{f'x'x} = f'y'y = 0$$

$$\begin{cases} |\nabla f| \ge 8, \\ \sigma_{\nabla f} / |\nabla f| \le 0.7 \\ f'_{x'x} = f'_{y'y} = 0 \end{cases}$$

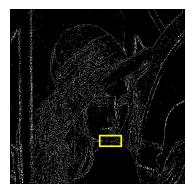
$$\begin{split} |\nabla f| &\geq 8,\\ \sigma_{\nabla f} / |\nabla f| &\leq 0.7,\\ f_{'x'x} &= f_{'y'y} = 0 \end{split}$$

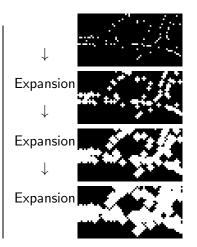
Disconnected edge

Expansion and Contraction of Binary image



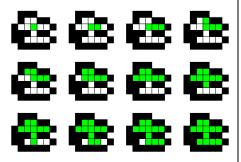
Connection of Edges by Expansion





7.9 Painting (Labeling)

Until finding border set mark



begin function flood_fill(i, j) if flag $L_{i,j}$ is not marked then set flag $L_{i,j} = D$ as internal call flood_fill(i + 1, j) call flood_fill(i - 1, j) call flood_fill(i - 1, j) call flood_fill(i - 1, j) end if end function

begin main set flag $L_{i,j} = B$ for boundary select initial point (i_0, j_0) flood_fill (i_0, j_0) end main

Recursive coding

Example of Painting

Original

Edge detection

Widen region (Expand region 3times) Connect broken edge (Exp edge 3times)

Flood fill



merged (with detected Edge)

This method requires several try to tune parameters. Unfortunately, there are no automatic methods.