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Fourier Transform (Series Expansion)

1. Fourier Transform (Series Expansion)

time t [s] ⇐⇒ frequency ω [rad/s]
position r [m]⇐⇒wave number k [rad/m]

◎ Advantages of Fourier Transform

understanding of data characteristic (period)

understanding data propagation mechanism
(Convolution ↔ Product in Fourier space)

Filtering (reduction of noise, enhancement of certain
characteristic)

simple mathematical operation
:
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Fourier Transform (Series Expansion)

○ Data characteristic
eg.
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sin k1x+ 1
2
cos k2x

We can understand periodicity of f(x) from spectrum
|F (k)|.

○ example of filtering

↓
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Fourier Transform (Series Expansion) Complex Fourier Series

1.1 Complex Fourier Series

Complete Orthogonal System

When a complex function f(θ); θ ∈ [−π,+π] satisfies
∫ b
a |f(θ)| dθ <∞
f(−π) = f(+π),

f(θ) is expressed by a series of eimθ.

f(θ) =

∞∑

m=−∞
Fmeimθ (1)

Fm =
1

2π

∫ π

−π
f(θ)e−imθ dθ (2)

(f ∈ C, θ ∈ R, m ∈ Z(Integer Numbers))
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Fourier Transform (Series Expansion) Complex Fourier Series

Completeness

f(θ) =
∞∑

m=−∞
Fmeimθ (Completeness) (1)

Proof: Show lim
N→∞

fN (θ)− f(θ) = 0 . (detail is omitted)

θθ

f(θ) f1(θ)
f3(θ)
f5(θ)

fN (x): Approximated function by truncated finite terms(
fN (θ) =

N∑

m=−N

Fmeimθ

)

※ Discontinuities of f(θ) between the domain, or the inconsistency at both ends
(f(−π) 6= f(+π)) are acceptable.
In these cases, the value at the discontinuous point is considered as the average.
(Dirichlet’s theorem)
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Fourier Transform (Series Expansion) Complex Fourier Series

Gibbs phenomenon

The truncated function with finite terms fN(θ) has
error with dumping oscillation around discontinuous point.

fN (θ) =
N∑

m=−N

Fmeimθ f1(θ)

f3(θ)

f5(θ)

f7(θ)

f9(θ)

f19(θ)

f29(θ)

f39(θ)

f49(θ)

f99(θ)
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Fourier Transform (Series Expansion) Complex Fourier Series

Orthogonality

f(θ) =

∞∑

m=−∞
Fmeimθ (1)

Fm =
1

2π

∫ π

−π
f(θ)e−imθ dθ (2)

We can prove Eq. (2) using the following orthogonal property.

1

2π

∫ π

−π
ei(m−m′)θ dθ = δm,m′ =

{
1 (m = m′)
0 (m 6= m′)

(Orthogonality) (3)
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Fourier Transform (Series Expansion) Complex Fourier Series

Scaling of domain(θ ∈ [−π,+π] → x ∈ [−l, l])

f(θ) =

∞∑

m=−∞
Fmeimθ (1)

Fm =
1

2π

∫ π

−π
f(θ)e−imθ dθ (2)

⇒
(

x =
l

π
θ, km = m

π

l
∈ R

)

⇓

f(x) =
∞∑

m=−∞
Fkme

ikmx (4)

Fkm =
1

2l

∫ l

−l
f(x)e−ikmx dx (5)

※ Both dimensions of f(x) and Fkm are same.
(

* Arguments of elementary functions has no dimensions. (Exception: x of log(x))
* The value of elementary function has also no dimensions.

)
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Fourier Transform (Series Expansion) Complex Fourier Series

Shifting origin(x ∈ [−l,+l] → x′ ∈ [−l + a, l + a])

f(x) =

∞∑

m=−∞
Fkme

ikmx (4)

Fkm =
1

2l

∫ l

−l
f(x)e−ikmx dx (5)

x→x+a−−−−−→
f(x+ a) =

∞∑

m=−∞
Fkme

ikm(x+a)

Fkm =
1

2l

∫ l

−l
f(x+ a)e−ikm(x+a) dx

⇓ (x′ = x+ a)

f(x′) =
∞∑

m=−∞
Fkme

ikmx′
(6)

Fkm =
1

2l

∫ l+a

−l+a
f(x′)e−ikmx′

dx′ (7)

Only the change of integration range
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Fourier Transform (Series Expansion) Complex Fourier Series

Fourier Transform(l→∞)

f(x) =

∞∑

m=−∞
Fkme

ikmx, Fkm =
1

2l

∫ l

−l
f(x)e−ikmx dx

(
km = m

π

l
= m∆k

)

If l→∞, then ∆k → 0 , discrete km → continuous k，,
∞∑

m=−∞
· · ·∆k →

∫ ∞

−∞
· · · dk

f(x) = lim
l→∞,
∆k→0

∞∑

m=−∞

Fkm

∆k
eikmx∆k =

∫ ∞

−∞

(
lim
l→∞,
∆k→0

Fkm

∆k

)
eikx dk =

∫ ∞

−∞
F̂ (k)eikx dk,

F̂ (k) = lim
l→∞,
∆k→0

Fkm

∆k
= lim

l→∞,
∆k→0

l

π

1

2l

∫ l

−l
f(x)e−ikmx dx =

1

2π

∫ ∞

−∞
f(x)e−ikx dx

f(x) =

∫ ∞

−∞
F̂ (k)eikx dk (Inverse Transform) (8)

F̂ (k) =
1

2π

∫ ∞

−∞
f(x)e−ikx dx (Forward Transform) (9)

※ Dimensions of f(x) and F̂ (k) are different.(
[f(x)] =

[
kF̂ (k)

]
,
[
F̂ (k)

]
= [xf(x)]

)
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Fourier Transform (Series Expansion) Complex Fourier Series

Orthogonality of continuous function

1

2π

∫ π

−π
ei(m−m′)θ dθ = δm,m′ (3)

1

2l

∫ l+a

−l+a
ei(km−km′ )x dx = δm,m′ (10)

In the case of l→∞∫ ∞

−∞
ei(k−k′)x dx

becomes ...?

Taking l→∞ in Eq. (10) lim
l→∞

1

2l

∫ l+a

−l+a
ei(km−km′)x dx = δm,m′

Multiplying 2l for both sides of Eq. (10)

LHS = lim
l→∞

∫ l+a

−l+a
ei(km−km′ )x dx =

∫ ∞

−∞
ei(k−k′)x dx

RHS = lim
l→∞

2l δm,m′ =

{
∞ (k = k′)
0 (k 6= k′)




RHS=δ(k − k′) ??
Can we handle as a symmetric
function, although the original is
an asymmetric function?
Is the result a positive real
value?



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Fourier Transform (Series Expansion) Complex Fourier Series

The INVERSE transform of the FORWARD transform must equal the original function.

f(x) =

∫ ∞

−∞
F (k)eikx dk (8)

F (k) =
1

2π

∫ ∞

−∞
f(x)e−ikx dx (9)

After substituting Eq. (8) into RHS of Eq. (9), exchange the order of integrals.

F (k) =
1

2π

∫ ∞

−∞

(∫ ∞

−∞
F (k′)eik

′x dk′
)
e−ikx dx =

∫ ∞

−∞
F (k′)

(
1

2π

∫ ∞

−∞
ei(k

′−k)x dx

)
dk′

The δ function has a following nature.

F (k) =

∫ ∞

−∞
F (k′)δ(k′ − k) dk′

From comparisons of them we can derive the following orthogonality.

1

2π

∫ ∞

−∞
ei(k−k′)x dx = δ(k − k′) (11)
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Fourier Transform (Series Expansion) Complex Fourier Series

Dirac’s δfunction

Definition of δ func.

δ(x) =

{
∞(x = 0)
0 (x 6= 0)

(12)

∫ ∞

−∞
δ(x) dx = 1 (13)

0 x

δ(x)

∞

∫ ∞

−∞
f(x)δ(x− x′) dx = f(x′) (14)

eg. δ(x) = lim
h→0

fh(x)

x0

h1/h

fh(x)

x0

h1/h

fh(x)

Dimension of δ func.

[δ(x)] =

[
1

x

]

Natures in the evaluation of integrals (Natures of integral of product with f(x))

δ(−x) = δ(x), δ(1)(−x) = −δ(1)(x), xδ(x) = 0, δ(ax) =
1

|a|δ(x), · · ·
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Fourier Transform (Series Expansion) Complex Fourier Series

Various expressions of Fourier Transform

The sufficient condition is INV{FWD{f}} = f .
○ Arbitrary polarity of index in exponential function




f(x) =

∫ ∞

−∞
F (k)e±ikx dk

F (k) =
1

2π

∫ ∞

−∞
f(x)e∓ikx dx

○ Arbitrariness of factor




f(x) = A

∫ ∞

−∞
F (k)e+ikx dk

F (k) = A′
∫ ∞

−∞
f(x)e−ikx dx

AA′ =
1

2π
(Sufficient condition)

A A′ Nature
1√
2π

1√
2π

symmetrical form

1

2π
1

When k = 2πk̄, both
factors equals to 1.

1
1

2π
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Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

1.2 Discrete Fourier Transform (DFT)
(
In exact, “Discrete Fourier Series
Expansion”.

)
f ′(x) =

∞∑

m=−∞
F ′
kme

ikmx (4)

F ′
km =

1

L

∫ L

0
f ′(x)e−ikmx dx (5)

km = m
2π

L
(15)

Consider the case when f(x) is
sampled with even intervals.

(n = 0, 1, · · · , N − 1)

fn ≡ f ′(xn), xn ≡ n∆x




Represent integral by summation:
∫ L

0
· · · dx ≃

N−1∑

n=0

· · · ∆x

(L = N∆x)

→ F ′
km ≃

1

L

N−1∑

n=0

fne
−ikmxn∆x




fn =
N−1∑

m=0

Fme+i 2πnm
N (16)

Fm =
1

N

N−1∑

n=0

fne
−i 2πnm

N (17)
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Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

Periodicity of Fm and fn

Fm′ =
1

N

N−1∑

n=0

fne
−i 2πnm′

N (17)

Replacing m′ = m+N

Fm+N =
1

N

N−1∑

n=0

fn e
−i

2πn(m+N)
N

=
1

N

N−1∑

n=0

fn e
−i 2πnm

N e−i2πn
︸ ︷︷ ︸

=1

= Fm

Fm has a periodicity.

Fm±N = Fm (18)

fn′ =

N−1∑

m=0

Fme+i 2πn′m
N (16)

Fm also has a periodicity.

fn±N = fn (19)

We can choose any set of N
points for m in Fm or n in fn, if
the point is not a periodic points
of others.
However, we must consider the
sampling theorem for interpola-
tions.

15 / 197



Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

Sampling Theorem

Signal consist of single sinusoidal func-
tion:

fm(x) = Fmeikmx (km = 2π
Lm

)

In order to observe oscillation with a pe-
riod Lm, two points are needed within
Lm.

Sampling Theorem

∆x ≤ Lm

2

km ≤
π

∆x
(Nyquist Freq.)

(20)

Lm

x

8 pts
∆x =

Lm

8

4 pts
∆x =

Lm

4

2 pts
∆x =

Lm

2

1 pt
∆x = Lm

Oscillation cannot be ob-
served, with ∆x = Lm.
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Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

Sampling Theorem and Aliasing
Case of m = 3 :

x

x

x

L

Lm = L
3

∆x = L
24 = Lm

8 < Lm

2

∆x = L
4 = 3Lm

4 > Lm

2

Fine sampling (N = 24)

Coarse sampling (N = 4)

∆x >
L

2
→ Different sinusoidal

function is observed. → Aliasing



Freq. of true signal:

km = m
2π

L
Freq. of spurious signal:

k′m = (m−N)
2π

L
= km−N




If the sampling interval is∆x, the signal

with km >
π

∆x
cannot be observed.

→Sampling Theorem
In this condition, the aliased signal with
the following frequency is observed.
−π
∆x
≤ km′ = km−N ≤

π

∆x
(|m−N | ≤ N/2)
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Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

Relation of domains and intervals between real and Fourier
spaces

{
L = xmax − xmin = N∆x (fn = fn±N)
K = kmax − kmin = N∆k (Fm = Fm±N )





Sampling Theorem: |k| < π

∆x

Symmetry of k
(kmin = −kmax)

(
kmax = −kmin =

π

∆x

)

K = kmax − kmin =
2π

∆x

∆k =
2π

xmax − xmin
=

2π

L

(
Real
space

) (
Fourier
space

)

∆x
Reciprocal⇐⇒

(Prod.=2π)
K

×N ⇓ ⇑ ×N
L

Reciprocal⇐⇒
(Prod.=2π)

∆k
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Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

Summary of DFT

FT of signal with discrete sampling (num. of samp.=N)

fn =
∑

m

Fmeikmxn

(xn=n∆x)

FWD−−→←−−
INV

Fm =
1

N

∑

n

fne
−ikmxn

(km=m∆k)

Suffixes n and m of fn and Fm have periodicity with the period N .

In the computation of fn and Fm, arbitrary set of m and n has same
result because of this periodicity. (eg. n,m = {0, · · · , N − 1}, or

n,m = {⌊−N/2⌋, · · · , ⌊N/2− 1⌋})

However, if m of Fm is |m| > N/2, m should be shifted into
|m| ≤ N/2 to satisfy sampling theorem.

Interpolation
Once Fm is obtained, we can evaluate f(x|x 6= n∆x) by inverse trans-
form. In this case, m must satisfy the sampling theorem. Otherwise,
the interpolated function shows an aliasing function.
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Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

Techniques to compute DFT

Fm =
1

N

N−1∑

n=0

fne
−i 2πmn

N (17)

In a simple computation,
most of computational cost is
consumed to evaluate
exponential function e−i 2πmn

N .

To evaluate all of Fm, N2

times evaluations are needed.

Argument of exponential
function
mn

N
=
⌊mn

N

⌋

︸ ︷︷ ︸
Integer

+
1

N
(mn)%N︸ ︷︷ ︸
Fraction

mn%N ∈ {0, 1, · · · , N − 1}

Since ei2lπ = 1 for l ∈ Z,
e−i 2πmn

N = e−i 2π(mn)%N

N .

If we evaluate W p = e−
i2π
N

p

for p ∈ {0, 1, · · · , N} at the
first, the number of times for
exponential evaluations is only
N .




When we use this table, the time to
compute multiplication governs the
computational time.
The scheme to reduce the num.
of times for multiplication is called
FFT.



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Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

Window function

Sinusoidal signal: fxn = cos k1xn

Case of fx0 = fxN

|Fkm | = 1
2 (δm,n + δ−m,n)

Case of fx0 6= fxN

|F (k)| spreads around k1.

◮ Reason:
Assumed periodicity.

◮ Solution: Multiply window
function w(x) so that the ends
becomes continuous.

f ′(x) = w(x)f(x)
◮ example of the window function:

w(x) = 1
2

(
1 + cos 2π(x−xc)

L

)

(x ∈ [xc − L/2, xc + L/2])

L

L

L

L

x

f(x)

f(x)

w(x)

k

|F (k)|

kmax

kmax

kmax

kmin

kmin

kmin

k1

k1

k1

−k1

−k1

−k1
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Fourier Transform (Series Expansion) Discrete Fourier Transform (DFT)

Two-dimensional DFT

Fmx,my =
1

NxNy

Nx−1∑

nx=0

Ny−1∑

ny=0

fnx,nye
−i

(
2πmxnx

Nx
+

2πmyny
Ny

)

(21)

To evaluate all Fmx,my (NxNy)
2 times multiplication are needed. (4 loops)

(
Exchange the order
of operators

) Fmx,my =
1

Nx

Nx−1∑

nx=0





1

Ny

Ny−1∑

ny=0

fnx,nye
−i

2πmyny
Ny





︸ ︷︷ ︸
=Gnx,my

e−i 2πmxnx
Nx

Gnx,my =
1

Ny

Ny−1∑

ny=0

fnx,nye
−i

2πmyny
Ny , Fmx,my =

1

Nx

Nx−1∑

nx=0

Gnx,mye
−i 2πmxnx

Nx

{
Gnx,my

Fmx,my

}
is the FT of

{
fnx,ny

Gnx,my

}
with

{
my
mx

}
. The num. of multi. for all is

{
NxN

2
y

N2
xNy

}
.

Total num. of operation is reduced to NxN
2
y +N2

xNy times. (3 loops for each step. 2 steps.)
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Fourier Transform (Series Expansion) Fast Fourier Transform (FFT)

1.3 Fast Fourier Transform (FFT)

(FFT: Fast Fourier Transform)
F̂m =

1

N

N−1∑

n=0

fne
−i 2π

N
mn (17)

Fm ,

N−1∑

n=0

fn e
−i 2π

N
mn

︸ ︷︷ ︸
Wmn

(
F̂m = 1

NFm

)

W = e−i 2π
N

Fm =

N−1∑

n=0

fnW
mn

+1−1
W 0

W 1

W 2
W 3

W 4

W 5

W 6

W 7

ℜ

ℑ
(N = 8)

In the case of N = 2p (p ∈ N), Wmn±N/2 = −Wmn is satisfied.
By using this relation, the number of times of multiplications can be
reduced.

23 / 197



Fourier Transform (Series Expansion) Fast Fourier Transform (FFT)

Divide n of fn, n ∈ {0, · · · , N − 1}, into two groups which are the even
group and the odd group.

f e
n′ = f2n′ , f o

n′ = f2n′+1 (n′ ∈ {0, 1, ..., N/2 − 1})



Fm =

N−1∑

n=0

fnW
mn =

N/2−1∑

n′=0

f e
n′ W 2mn′

+

N/2−1∑

n′=0

f o
n′ Wm(2n′+1)

=

N/2−1∑

n=0

f e
nW

2mn

︸ ︷︷ ︸
DFT of fe

n ≡ F e
m(N/2points)

+Wm

N/2−1∑

n=0

f o
n W

2mn

︸ ︷︷ ︸
DFT of fo

n ≡ F o
m(N/2points)

= F e
m +WmF o

m




Replace (m→ N/2 +m)



FN
2
+m =

N/2−1∑

n=0

f e
n

W 2mn

︷ ︸︸ ︷
W 2(N/2+m)n +

−Wm

︷ ︸︸ ︷
WN/2+m

N/2−1∑

n=0

f o
n

W 2mn

︷ ︸︸ ︷
W 2(N/2+m)n

=

N/2−1∑

n=0

f e
nW

2mn

︸ ︷︷ ︸
DFT of fe

n ≡ F e
m(N/2points)

−Wm

N/2−1∑

n=0

f o
n W

2mn

︸ ︷︷ ︸
DFT of fo

n ≡ F o
m(N/2points)

= F e
m −WmF o

m



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Fourier Transform (Series Expansion) Fast Fourier Transform (FFT)

Butterfly operation

F
{ e

o}
m =

N/2−1∑

n=0

f
{ e

o}
n W 2nm (22)

{
Fm = F e

m +WmF o
m

FN/2+m= F e
m −WmF o

m
(23)

(m ∈ {0, · · · , N/2 − 1})

F e
m

F o
m

Fm

FN/2+m

+Wm

−Wm

1

1

Butterfly operation

If we know both F e
m and F o

m, we can evaluate both Fm and FN/2+m.

In order to evaluate Fm and FN/2+m, N/2 times of multiplications for
each are needed. The sum of them are N times.

In order to obtain F e
m and F o

m, · · · .
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Fourier Transform (Series Expansion) Fast Fourier Transform (FFT)

Divide each of F e
m and F o

m into two groups. Furthermore, repeat dividing.

1st time (N1 = N/2) F{
m

m+N1

} = F e
m ±WmF o

m

2nd time (N2 = N/22) F x{
m

m+N2

} = F xe
m ±W 2mF xo

m (x ∈ {e, o})

3rd time (N3 = N/23) F x1x2{
m

m+N3

} = F x1x2e
m ±W 22mF x1x2o

m

(x0, x1 ∈ {e, o})

q-th time (Nq = N/2q) FX{
m

m+Nq

} = FXe
m ±W 2(q−1)mFXo

m

(X = (x0 x1 · · · xq−2), xi ∈ {e, o})
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Fourier Transform (Series Expansion) Fast Fourier Transform (FFT)

eee f0 = F eee
0 F ee

0 F e
0 F0

eeo f4 = F eeo
0 F ee

1 F e
1 F1

eoe f2 = F eoe
0 F eo

0 F e
2 F2

eoo f6 = F eoo
0 F eo

1 F e
3 F3

oee f1 = F oee
0 F oe

0 F o
0 F4

oeo f5 = F oeo
0 F oe

1 F o
1 F5

ooe f3 = F ooe
0 F oo

0 F o
2 F6

ooo f7 = F ooo
0 F oo

1 F o
3 F7

(
p=3
N=8

)
Nq = 1

q = 1
Nq = 2
q = 2

Nq = 4
q = 3

W 0

W 0

W 0

W 0

W 0

W 0 W 0

−W 0

−W 0

−W 0

−W 0

−W 0

−W 0

−W 0

W 1

−W 1
W 2

W 2

W 2

−W 2

−W 2

−W 2

W 3

−W 3

1

1

+W 2(q−1)m

−W 2(q−1)m

FXe
m

FXo
m

FX
m

FX
Nq+m

X = (x0, ..., xp−q−1)

xi ∈ {e, o}

Times of multiplications:
N/stage× p stage = N log2 N
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Fourier Transform (Series Expansion) Fast Fourier Transform (FFT)

Bit-reversal scheme

Relation between FX
m and fn (e.g. N = 8, p = 3)

F eo
m ( Pick up the even group in the first. After that pick up the odd group. )

0 1 2 3 4 5 6 7
(0) (1) (2) (3) (4) (5) (6) (7) pick up the even group (e)

0 2 4 6
(0) (1) (2) (3) pick up the even group (o)

2 6 → F eo
m : FT of two points for f2 and f6.

(0) (1)

F eoo
0 ( Pick up groups in order of even, odd, and odd.)

6 → F eoo
0 :FT of the single point for f6.

Bit-reversal scheme

(a) parity eee eeo eoe eoo oee oeo ooe ooo

e→ 0, o→ 1
(b) binary 000 001 010 011 100 101 110 111

(decimal) (0) (1) (2) (3) (4) (5) (6) (7)

(c) reversal 000 100 010 110 001 101 011 111
(decimal) (0) (4) (2) (6) (1) (5) (3) (7)

We can obtain the list of n for fn by using bit reverse.
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Fourier Transform (Series Expansion) Fast Fourier Transform (FFT)

Example of FFT operation

(Path to evaluate F3.)

f0 F0

f1

F1

f2 F2

f3

F3

f4

F4

f5 F5

f6

F6

f7 F7
−W 0

(W 4)

−W 0
(W 4)

−W 0
(W 4)

−W 0
(W 4)

−W 2
(W 6)

−W 2
(W 6) W 3

q = 1q = 2q = 3

1

1

1

1

1

1

Product along path (W 8 = 1,−1 = W 4) check

beg. St. 1 St. 2 St. 3 Product○ n 3n 3n%8○

f0 1 1 1 1 = W 0 0 0 0
f4 −W 0 1 1 −W 0 = W 4 4 12 4
f2 1 −W 2 1 −W 2 = W 6 2 6 6
f6 −W 0 −W 2 1 W 2 6 18 2
f1 1 1 W 3 W 3 1 3 3
f5 −W 0 1 W 3 −W 3 = W 7 5 15 7
f3 1 −W 2 W 3 −W 5 = W 1 3 9 1
f7 −W 0 −W 2 W 3 W 5 7 21 5

We can confirm that the columns with ”○” are same.

Fm =

N−1∑

n=0

fnW
nm
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Fourier Transform (Series Expansion) Fast Fourier Transform (FFT)

To apply FFT

The FFT can be applied only when N = 2p.

In the case of N 6= 2p (2p−1 < N < 2p):

◮ Remove data with less information around ends so that N ′ = 2p−1.

◮ Add data fn = f † for n ∈ N, ..., 2p so that N ′ = 2p. (padding)(
Padding data f †: f̄(ave.), 0, or f0+fN−1

2

)

◮ A window function after adding or removing is multiplied, if necessary.
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Fourier Transform (Series Expansion) Fast Fourier Transform (FFT)

Summary of FFT

When N = 2p, the times of multiplications can be reduced by using
butterfly operations.

Comparison of the times of multiplications

NMul(FFT) = N log2N

NMul(DFT) = N2
→ NMul(FFT)≪ NMul(DFT)

FFT is more effective with increasing N .
e.g. N 32 1024 32768

DFT ∼ 1000 ∼ 106 ∼ 109

FFT 160 ∼ 104 ∼ 5× 105

In the case of a two-dimensional image (Nx ×Ny), FFT can be
applied only for the most inner loop.

NMul(FFT) = NxNy(log2 Nx + log2 Ny)

NMul(DFT) = NxNy(Nx +Ny)
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Fourier Transform (Series Expansion) Characteristices of Fourier Transform

1.4 Characteristices of Fourier Transform
Examples of Fourier Transform (Origin : center)

Ope. f(r) ∈ R ℜ{F (k)} ℑ{F (k)} |F (k)| log |F (k)|

Orig.

Shift

Scale
down

Rotation
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Fourier Transform (Series Expansion) Characteristices of Fourier Transform

Symmetry

f(r) = a(r) + ib(r) (a, b ∈ R, f ∈ C)

F (k) = A(k) + iB(k) (A,B,F ∈ C)

= A+ iB (omit (k))

F (k) ,

∫
f(r)e−ik·r dr




{
A(k)
B(k)

}
=

∫ {
a(r)
b(r)

}
e−ik·r dr

{
A(−k)
B(−k)

}
=

∫ {
a(r)
b(r)

}
e+ik·r dr




{
A(−k)
B(−k)

}
=

{
A∗(k)
B∗(k)

}
=

{
A∗

B∗

}

F ∗(k) = A∗ − iB∗

F (−k) = A∗ + iB∗ 6= F ∗(k)

|F (k)|2 = (A+ iB)∗(A+ iB)

= (|A|2 + |B|2)+i(A∗B −AB∗)

|F (−k)|2 = (A∗ + iB∗)∗(A∗ + iB∗)

= (|A|2 + |B|2)−i(A∗B −AB∗)

6= |F (k)|2

ℜ{F (k)} ℑ{F (k)} |F (k)|
f(r) = a(r)(Real) sym. anti-sym. sym.

f(r) = ib(r)(Pure imag.) anti-sym. sym. sym.

f(r) = a(r) + ib(r)(Complex) non-sym. non-sym. non-sym.
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Fourier Transform (Series Expansion) Characteristices of Fourier Transform

Coordinate transformation

ℜ{F (k)} ℑ{F (k)} |F (k)|
Translation Identical

Scale down Scale up Scale up Scale up

Rotation Rotation Rotation Rotation

Translation

f1(r) = f0(r +∆)

F1(k) = e+ik·∆F0(k)


(r′ = r +∆)
F1(k) =

∫
f1(r)e

−ik·r dr
=
∫
f0(r +∆)e−ik·r dr

=
∫
f0(r

′)e−ik·(r′−∆) dr′

= e+ik·∆

·
∫
f0(r

′)e−ik·r′
dr′




Scaling

f1(r) = f0(αr)

F1(k) =
1

α
F0

(
k

α

)




(r′ = αr)
F1(k) =

∫
f1(r)e

−ik·r dr
=
∫
f0(αr)e

−ik·r dr

=
∫
f0(r

′)e−ik· r′
α

dr′
α

= 1
α

∫
f0(r

′)e−i( k

α)r
′· dr′




Rotation

f1(r) = f0(Θ · r)
F1(k) = F0 (Θ · k)


(r′ = Θ · r)
F1(k) =

∫
f1(r)e

−ik·r dr
=
∫
f0(Θr)e−ik·r dr

=
∫
f0(r

′)e−ik·Θ−1·r′ dr′

|Θ|(
k ·Θ−1 = Θ · k,
|Θ| = 1

)

=
∫
f0(r

′)e−i(Θ·k)·r′
dr′



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Power Spectrum and Correlation function

2. Power Spectrum and Correlation function

What is correlation?
Relation between two discrete data set (xi, yi)

What is correlation function?
Relation between two variates which are represented as continuous
function (x(t), y(t))

What is power spectrum?
Measure of Fourier transformed function X(ω) of a variate x(t).

Wiener-Khintchine’s theorem
Relation between power spectrum and auto-correlation function
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Power Spectrum and Correlation function Definition of Power Spectrum

2.1 Definition of Power Spectrum

Fourier Transform :

x(t) =
1

2π

∫ ∞

−∞
X(ω)ejωt dω (1)

X(ω) =

∫ ∞

−∞
x(t)e−jωt dt (2)

Power spectral density

S(ω) = lim
T→∞

|X(ω)|2
T

(3)

Time average of the square of sinusoidal component with frequency ω
in the signal.

No information about phase.

S(ω) dω expresses the power spectrum.

|X(ω)|2 is called energy spectrum.

Dimension analysis: FT of x : [X] = [x · t]
Power spectral density : [S] =

[
|X|2
T

]
=
[
x2 · t

]

Power spectrum : [S dω] =
[
X2

t
1
t

]
=
[
x2
]

Energy spectral density :
[
|X|2

]
=
[
x2t2

]
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Power Spectrum and Correlation function Correlation

2.2 Correlation

Population: Sample fi (i ∈ (1, · · · , N))

Average E [f ] ≡ 1

N

N∑

i=1

fi (4)

Variance σ2
f ≡ E

[
(f − E [f ])2

]
(5)

Correlation: Index to represent similarity of two variates (xi, yi ).

C = E
[
x′y′

]
, or r =

E [x′y′]√
E
[
x′2
]
E
[
y′2
] (6)

(x′i = xi − E [x] , y′i = yi − E [y]) xx

yy

No correlation Positive correlation
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Power Spectrum and Correlation function Correlation Function

2.3 Correlation Function

In case where x and y are variates with respect to time:

E [x]→ lim
T→∞

1

T

∫ T
2

−T
2

x(t) dt = 〈x(t)〉t (Time Average) (7)

e.g. x(t): Amount of rainfall，
y(t): Amount of water in a river

x(t)

y(t)

t

t

Time delay

Smoothing of time fluctuation
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Power Spectrum and Correlation function Correlation Function

Cross-correlation function and Auto-correlation function

Cross-correlation function

Cxy(τ) = lim
T→∞

1

T

∫ T
2

−T
2

x(t)y(t+ τ) dt = 〈x(t)y(t+ τ)〉t (8)

Even when y(t) = x(t), we can understand the periodicity of x(t).

Auto-correlation function

C(τ) = lim
T→∞

1

T

∫ T
2

−T
2

x(t)x(t+ τ) dt = 〈x(t)x(t+ τ)〉t (9)

(Normalization)

R(τ) =
C(τ)

C(0)
=
〈x(t)x(t+ τ)〉t
〈x(t)2〉t

, R(0) = 1

→ auto-correlation coefficient
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Power Spectrum and Correlation function Correlation Function

Periodicity of auto-correlation function

(e.g. 1) x(t) = A cos ω1t

C(τ) = lim
T→∞

1

T

∫ T
2

−T
2

(A cos ω1t)(A cos ω1(t+ τ)) dt = lim
T→∞

1

T

∫ T
2

−T
2

(A cos ω1t)(A cosω1(t+ τ)) dt

= A2 lim
T→∞

1

T

∫ T
2

−T
2

(
cos2 ω1t cosω1τ − cosω1t sinω1t sinω1τ

)
dt

= A2 lim
T→∞

[
1

T

∫ T
2

−T
2

1 + cos 2ω1t

2
dt

︸ ︷︷ ︸
= 1

2

cosω1τ −
1

T

∫ T
2

−T
2

sin 2ω1t

2
dt

︸ ︷︷ ︸
=0

sinω1τ

]
=

A2

2
cosω1τ

R(τ) = cosω1τ

(e.g. 2) x(t) = A sinω1t = A cos
(
ω1t−

π

2

)

C(τ) = A2 lim
T→∞

[
1

T

∫ T
2

−T
2

1 + cos
(
2
(
ω1t− π

2

))

2
dt cosω1τ −

1

T

∫ T
2

−T
2

sin
(
2
(
ω1t− π

2

))

2
dt sinω1τ

]
=

A2

2
cosω1τ

R(τ) = cosω1τ

Periodicity is found.

Independent of phase → Independent of the origin of t.
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Power Spectrum and Correlation function Correlation Function

Characteristics of Auto-correlation function

Independent of the position of origin.

Even function. (C(−τ) = C(τ))


C(−τ) = lim
T→∞

1

T

∫ T
2

−T
2

x(t)x(t− τ) dt (t′ = t− τ)

= lim
T→∞

∫ T
2
−τ

−T
2
−τ

x(t′ + τ)x(t′) dt′
(
T

2
≫ |τ |

)

= lim
T→∞

∫ T
2

−T
2

x(t′ + τ)x(t′) dt′ = C(τ)




Maximum at τ = 0.∫ T
2

−T
2

(x(t)± x(t+ τ))2 dt ≥ 0




LHS =

∫
x2(t) dt

︸ ︷︷ ︸
C(0)≥0

+

∫
x2(t+ τ) dt

︸ ︷︷ ︸
C(0)≥0

±2
∫

x(t)x(t+ τ) dt

︸ ︷︷ ︸
C(τ)

= 2(C(0)± C(τ)) ≥ 0 = RHS

∴ C(0) ≥ |C(τ)|



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Power Spectrum and Correlation function Correlation Function

The 1st differential of C(τ)


C ′(τ) =
dC

dτ
= lim

T→∞
1

T

∫ T
2

−T
2

x(t)
∂x(t+ τ)

∂τ︸ ︷︷ ︸
=x′(t+τ)

dt =
〈
x(t)x′(t+ τ)

〉
t

(Replacing t+ τ = ξ → dt = dξ, because ∂(t+τ)
∂τ = 1)

= lim
T→∞

∫ T
2
+τ

−T
2
+τ

x(ξ − τ)x′(ξ) dξ

= lim
T→∞

∫ T
2

−T
2

x(ξ − τ)x′(ξ) dξ =
〈
x(t− τ)x′(t)

〉
t




Cross-correlation
between x(t) and
x′(t).

The 2nd differential of C(τ)




C ′′(τ) =
d2C

dτ2
=
〈
x(t)x′′(t+ τ)

〉
t

(or replacing t− τ = η (∂(t−τ)
∂τ = −1))

= lim
T→∞

∫ T
2

−T
2

(
−x′(η)x′(η + τ)

)
dη

= −
〈
x′(t)x′(t+ τ)

〉
t




Cross-correlation
between x(t) and
x′′(t).

and
Negative of
auto-correlation of
x′(t).
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Power Spectrum and Correlation function Relation between Power spectrum and Auto-correlation

2.4 Relation between Power spectrum and Auto-correlation

Domain of signal: (x(t) ∈ R)

x(t) :

{
6= 0 −T

2 ≤ t ≤ T
2

= 0 elsewhere

Fourier transform (integral):

x(t) =
1

2π

∫ ∞

−∞
X(ω)ejωt dω

(
=

1

2π

∫ ∞

−∞
X∗(ω)e−jωt dω

)

X(ω) =

∫ ∞

−∞
x(t)e−jωt dt

Auto-correlation function:
C(τ) = lim

T→∞
1

T

∫ T
2

−T
2

x(t)x(t+ τ) dt

= lim
T→∞

1

T

∫ T
2

−T
2

[
1

2

∫ ∞

−∞
X∗(ω)e−jωt dω

] [
1

2

∫ ∞

−∞
X(ω′)ejω

′(t+τ) dω′
]
dt

= lim
T→∞

1

2πT

∫ ∞

−∞
X∗(ω)ejωτ

∫ ∞

−∞
X(ω′)

(
1

2π

∫ ∞

−∞
ej(ω

′−ω)t dt

)

︸ ︷︷ ︸
δ(ω′−ω)

dω′ dω

=
1

2π

∫ ∞

−∞
lim
T→∞

X∗(ω)X(ω)

T︸ ︷︷ ︸
=S(ω)

ejωτ dω =
1

2π

∫ ∞

−∞
S(ω)ejωτ dω

C(τ) is identical to the inverse Fourier transform of S(ω).
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Power Spectrum and Correlation function Relation between Power spectrum and Auto-correlation

Wiener-Khintchine’s theorem

C(τ) =
1

2π

∫ ∞

−∞
S(ω)ejωτ dω (10)

S(ω) =

∫ ∞

−∞
C(τ)e−jωτ dτ (11)

x(t)
〈x(t)x(t+τ)〉t−−−−−−−−→ C(τ)

↓↑ FT ↓↑ FT
X(ω)

〈X(ω)X∗(ω)〉t−−−−−−−−−→ S(ω)

〈· · ·〉t: Time average when T →∞.
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Power Spectrum and Correlation function Cross-spectrum and Cross-correlation

2.5 Cross-spectrum and Cross-correlation

Cxy(τ) =
1

2π

∫ ∞

−∞
Sxy(ω)e

jωτ dω (12)

Sxy(ω) =

∫ ∞

−∞
Cxy(τ)e

−jωτ dτ (13)

Cross-spectral density

Sxy(ω) = lim
T→∞

X∗(ω)Y (ω)

T

= 〈X∗(ω)Y (ω)〉t (14)




Cxy(τ) = lim
T→∞

1

T

∫ T
2

−T
2

x(t)y(t+ τ) dt = lim
T→∞

1

T

∫ T
2

−T
2

x∗(t)y(t+ τ) dt (∵ x(t), y(t) ∈ R)

= lim
T→∞

1

T

∫ ∞

−∞

(
1

2π

∫

ω
X∗(ω)e−jωt dω

)(
1

2π

∫

ω′
Y (ω)ejω

′(t+τ) dω′
)
dt

= lim
T→∞

1

2πT

∫

ω
X∗(ω)ejωτ

∫

ω′
Y (ω′)

(
1

2π

∫ ∞

−∞
ej(ω

′−ω)t dt

)
dω′ dω

= lim
T→∞

1

2πT

∫

ω
X∗(ω)ejωτ

∫

ω′
Y (ω′)δ(ω′ − ω) dω′ dω = lim

T→∞
1

2πT

∫

ω
X∗(ω)Y (ω)ejωτ dω

=
1

2π

∫

ω
lim
T→∞

X∗(ω)Y (ω)

T
ejωτ dω =

1

2π

∫

ω
Sxy(ω)e

jωτ dω



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Power Spectrum and Correlation function Cross-spectrum and Cross-correlation

Characteristics of Cross-spectrum

Cxy(τ) = lim
T→∞

1

T

∫ T
2

−T
2

x(t)y(t+ τ) dt = lim
T→∞

1

T

∫ T
2

−T
2

y(t)x(t− τ) dt = Cyx(−τ)

→ Cxy(τ) ∈ R (∵ x(t), y(t) ∈ R)

Sxy(ω) = F {Cxy(τ)}

Cxy(−τ) = Cyx(τ) (15)

Sxy(−ω) = S∗
xy(ω) (16)

Syx(ω) = S∗
xy(ω) (17)

Sxy(−ω) = Syx(ω) (18)
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Power Spectrum and Correlation function Cross-spectrum and Cross-correlation

Evaluation of translation
g(r) = f(r +∆), ∆ = (−8, 16) (Image size:128x128)

f(r) g(r)
Cfg(r)

(w/o POC)
Ĉfg(r)

(w/ POC)

(−8, 16) (−8.0, 16.0)




Cfg = F−1 {〈F ∗G〉t}

Ĉfg = F−1
{〈

F̂ ∗Ĝ
〉
t

}

F̂ =
F

|F | , Ĝ =
G

|G|
F̂ ∗Ĝ = ei(φG−φF )




POC:Phase Only cross-Correlation

In the case of g(r) = f(r +∆)

G(k) = eik·∆F (k)

F̂ ∗(k)Ĝ(k) = eik·∆

(φF (k) is canceled.)

Ĉfg(r) = F−1
{〈

eik·∆
〉
r

}

= lim
L→∞

1

L2

1

(2π)2

∫
eik·(∆−r) dk2

= lim
L→∞

1

L2
δ(r −∆)→ Sharp peak
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Power Spectrum and Correlation function Cross-spectrum and Cross-correlation

Evaluation of rotation and scaling

g(r) = f(αΘ · r +∆), ∆ = (−8, 16),
α =

1

2
, Θ =

(
cos θ1 − sin θ1
sin θ1 cos θ1

)
, θ1 = 30deg

(Image size:128x128)

Cartesian log-polar Hanning-Win.
(x, y) (kx, ky) (kθ, log |k|) (kθ, log |k|)
f(r) IF (k) = |F (k)| H {IF (k)}

g(r) IG(k) = |G(k)| H {IG(k)}

(
log scale
[0.05, 500]

) (
log scale
[0.05, 500]

)

CIF IG

= F−1 {(F {H{IF }})∗F {H{IG}}}
Cross-corr. of IF and IG

(kθ, log |k|)
CIF IG(k)

w/o POC w/ POC

kθ [deg] 19.6 29.4

log |k| −0.343 −0.682
1

|k| [times] 0.710 0.505
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Observation Model of Additive Noise Observation Model of Additive Noise

3. Noise
3.1 Observation Model of Additive Noise

Model of Additive Noise

x y

w

g

Noise

Input Output
Gain

y = gx+ w

N times measurements
(y(n), n ∈ {1, · · · , N})

y(n) = gx(n) + w(n)

(
y(n) : known

x(n), w(n) : unknown

)

x and w are independent

Definition of Expected value and
Variance

Expected Value :

E [f ] ≡ lim
N→∞

1

N

N∑

n=1

f (n) ≡ f

Variance :
σ2
f ≡ E

[(
f − f

)2]

What is the relation between x,
w, and y, or that between σ2

x,
σ2
w, and σ2

y?
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Observation Model of Additive Noise Observation Model of Additive Noise

Statistics of Observed value in the additive noise model

y = gx+ w

Ave. (Exp. Val.)
y = E [y] = E [gx+ w] = lim

N→∞
1

N

(∑
gx(n) + w(n)

)
= gE [x] + E [w] = gx+ w

Var.
σ2
y = E

[
((gx+ w)− y)2

]
= E

[
((gx +w) − (gx + w))2

]
= E

[
(g(x− x) + (w − w))2

]

= g2 E
[
(x− x)2

]

︸ ︷︷ ︸
=σ2

x

+2E [(x− x)(w − w)]︸ ︷︷ ︸
=0 (E[xw]=x·wより)

+E
[
(w − w)2

]

︸ ︷︷ ︸
=σ2

w

= g2σ2
x + σ2

w

In general, w = 0, σ2
w > 0. When N →∞,

y = gx
→ Effect of noise can be removed.

σ2
y = g2σ2

x + σ2
w > g2σ2

x

→ The variance caused by noise cannot be removed.
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Observation Model of Additive Noise Classification of random signal

3.2 Classification of random signal





Stationary

{
Ergodic
Non-Ergodic

Not stationary Non-ergodic

Multiple measurements of time varying
signal (f (n)(t), n ∈ {1, · · · , N})

f(t) = E[f(t)] = lim
N→∞

1

N

N∑

n=1

f (n)(t)

C(t, τ) = E[f(t)f(t+ τ)]

= lim
N→∞

1

N

N∑

n=1

f (n)(t)f (n)(t+ τ)

◮ Stationary :
f(t) = f ′, C(t, τ) = C ′(τ)

(Independent of t)

One of time varying signal

〈f〉(n) = lim
T→∞

1

T

∫ T
2

−T
2

f (n)(t) dt

C(n)(τ)

= lim
T→∞

1

T

∫ T
2

−T
2

f (n)(t)f (n)(t+ τ) dt

◮ Ergodic :

〈f〉(n) = f ′, C(n)(τ) = C ′(τ)
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Observation Model of Additive Noise Spectrum of Noise

3.3 Spectrum of Noise
White Noise

Stationary Ergodic random signal
(〈n(t)〉 = 0, σ2

n =
〈
n2(t)

〉
= n2 > 0)

White Noise : Independent at τ 6= 0.

Auto correlation : C(τ) = 〈n(t)n(t+ τ)〉 = lim
∆t→0

n2δ(τ)∆t (1)

( ∆t is added to match the dimension.)

Power Spectrum : S(ω) =

∫
n2δ(τ)∆te−jωτ dτ = n2∆t (2)

→ Spectrum is constant.⇔White

Cross correlations between other signals are 0.

Cnf (τ) = 〈n(t)f(t+ τ)〉 = 〈n(t)〉︸ ︷︷ ︸
=0

〈f(t+ τ)〉 = 0 (3)
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Observation Model of Additive Noise Observation Model of Additive Noise

Brownian Noise(1/f 2 Noise)

Markov Process(Affected by the previous point(neighbors))

r(t+∆t) = ρr(t) + n(t) (4) (0 < ρ < 1, ∆t > 0, n(t) : white noise )

Auto correlation
C(τ) = 〈r(t)r(t+ τ)〉

C(τ +∆t) = 〈r(t)r(t+ τ +∆t)〉
= 〈r(t) {ρr(t+ τ) + n(t+ τ)}〉
= ρ〈r(t)r(t+ τ)〉+ 〈r(t)n(t+ τ)〉
= ρC(τ)

Compare Taylor series expansion.(τ > 0)

C(τ +∆t) = C(τ) +
dC

dτ
∆t+O(∆t2)

→ ρC = C +
dC

dτ
∆t

→ 1

C
dC = − 1− ρ

∆t︸ ︷︷ ︸
=α

dτ = −α dτ

C(τ) = C0e
−ατ

Since C(τ) has an even property,

C(τ) = C0e
−α|τ | (5)

C0 is obtained from Eq.(4).

〈
r2(t+∆t)

〉
=
〈
(ρr(t) + n(t))2

〉

C0 = ρ2C0 + σ2
n

∴ C0 =
σ2
n

1− ρ2
(6)
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Observation Model of Additive Noise Observation Model of Additive Noise

Power spectrum

S(ω) =

∫ 0

−∞
C0e

(α−jω)t dt+

∫ ∞

0
C0e

(−α−jω)t dt

= C0

(
1

α− jω
+

−1
−α− jω

)
=

2C0α

ω2 + α2
(7)

Lorentz distribution ∝ 1

ω2 + α2

S(ω) ∝
{

const (ω ≪ α)
1
ω2 ∝ 1

f2 (ω ≫ α)
(8)

logS(ω)
logωα

1

2

Naming
◮ Red Noise ←Higher freq. (short wavelength) comp. is small.
◮ Brownian noise (Not color ’brown’)

←Spectrum of particle position with Brownian motion (Random walk)
◮ Lorentzian Noise

e.g. Thermal noise
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Observation Model of Additive Noise Observation Model of Additive Noise

1/f Noise

Noise with S(ω) ∝ 1

ω
(※ |X(ω)| ∝ 1√

ω
6= 1

ω
)

Signals with 1/f noise

Electric resistance of metal (fluctuation of num. of carriers)

Sound from small stream of water

pitch of grain of wood

The mechanism is not known clearly.

(Another name) Pink noise (Intermediate White and Red.)
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Observation Model of Additive Noise Auto correlation of observed value.

3.4 Auto correlation of observed value.

s′(t) = s(t) + n(t)

s(t) : True(Unknown.) Cs(τ) is also unknown.

n(t) : White Noise(Unknown.) Cn(τ) = n2δ(τ) is known.
s′(t) : Observed(Known.) Cs′(τ) is also known.

Cs′(τ) =
〈
s′(t)s′(t+ τ)

〉
= 〈{s(t) + n(t)}{s(t+ τ) + n(t+ τ)}〉

= 〈s(t)s(t+ τ)〉︸ ︷︷ ︸
=Cs(τ)

+ 〈n(t)s(t+ τ)〉︸ ︷︷ ︸
=0

+ 〈s(t)n(t+ τ)〉︸ ︷︷ ︸
=0

+ 〈n(t)n(t+ τ)〉︸ ︷︷ ︸
=Cn(τ)

= Cs(τ) + n2δ(τ)∆t

∴ Cs(τ) = C ′
s(τ)− n2δ(τ)∆t

If we know property of noise, we can obtain auto correlation of true.
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Observation Model of Additive Noise Intensity distribution of Noise

3.5 Intensity distribution of Noise

The terminology White or Red expresses spectrum in freq. domain.
This represents periodicity of signal, it does not represent the
intensity distribution of noise.

The quantity to represent the intensity is probability distribution p.
(Form of the function and Parameters (eg. standard deviation).

Well used probability distribution :
◮ Normal distribution (Gaussian distribution)
◮ Uniform distribution

To express the property of noise, both the spectrum and distribution
function are required.

(eg. White Normal distributed noise (with standard deviation))
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Generation of Random Noise Generation of Random Noise

3.6 Generation of Random Noise

Ideal Random Number: No periodicity → White Noise

Computer simulation: Random numbers are required for generation
of simulated noise. Normal rand. num. are required in many cases.

A function in most computers is only a series of Uniform Distrib.
Uniform Random number: X ∼ U [min,max]
Implemented one in computer system is X ∼ U [0, 1].(

X ∈ [0, 1] is generated and the probability to generating
them is same.

)

Methods to generate Normal Rand. from Uniform Rand.
◮ Sum of plural Uniform Random numbers.
◮ Coordinate transform of Uniform Random numbers
◮ Use of Multi-dimensional probability distribution function
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Generation of Random Noise Generation of Random Noise

Probability of independent events

Random Variable: X
X ∈ {x1, x2, · · · , xn} (Discrete)
X ∈ [xmin, xmax] (Continuous)

Probability Density Function: p(x)
Probability of X = x:

(In cont. system, p(x) dx.)

Cumulative Distribution Function:

P (X < x) =

∫ x

−∞
p(x) dx

(P (X <∞) = 1)

Average (expected value) of X:

x =

∫ ∞

−∞
xp(x) dx

Average of function with X:

f(X) = E [f(X)] =

∫ ∞

−∞
f(x)p(x) dx

Variance of X:
σ2
x = (x− x)2 = x2 − x2


(x− x)2 =

∫
(x− x)2 p(x) dx

=

∫
(x2 − 2xx+ x2) p(x) dx

=

∫
x2 p(x) dx

︸ ︷︷ ︸
=x2

−2x
∫

x p(x) dx

︸ ︷︷ ︸
=x

+x2
∫

p(x) dx

︸ ︷︷ ︸
=1

= x2 − x2




Incident Prob. Dens. Func. for two
independent events:

p(x1, x2) = p1(x1) p2(x2)

◮ x1 + x2 = x1 + x2

◮ σ2
x1+x2

= σ2
x1

+ σ2
x2

◮ x1x2 = x1 · x2
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Generation of Random Noise Generation of Random Noise

Generation of Normal random distribution using sum of uniform random numbers

Central Limit Theorem
Sum of Random Variables which obey an independent distribution con-
verges to a Normal distribution. (There are some exceptions.)

Xu ∼ U [0, 1] → p(x) = 1

Sum of two random number:

F (x) = P (X1 +X2 < x) =

∫ ∫

x1+x2<x
dx1 dx2

Case of 0 < x ≤ 1:

F (x) =

∫ x

x1=0

∫ x−x1

x2=0
dx2 dx1 =

x2

2

Case of 1 < x ≤ 2:

F (x) =

(∫ x−1

x1=0

∫ 1

x2=0
+

∫ 1

x1=x−1

∫ x−x1

x2=0

)
dx2 dx1

= −x2

2
+ 2x− 1

p(x) =

{
x (0 < x ≤ 1)

2− x (1 < x ≤ 2)

x1x1

x2x2
x2 = x− x1

x2 = x− x1

x x− 1

1

1

1

1 00

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

N = 1
N = 2
N = 3
N = 4
N = 5
N = 6
N = 7
N = 8
N = 9
N = 10p(

N
) (
x
)

x
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Generation of Random Noise Generation of Random Noise

Xu ∼ U [0, 1] → p(x) = 1

Average and Variance



xu =

∫ 1

0
xu dxu =

1

2

σ2
xu

=

∫ 1

0
(xu − xu)

2 dxu = x2u − xu
2

= 1
3 − 1

4 = 1
12

X =

N∑

n=1

Xu





x =
N∑

n=1

xu =
N

2

σ2
x =

N∑

n=1

σ2
xu

=
N

12

When N = 12,

X =

12∑

n=1

Xu − 6 ∼ N [0, 1]

is obtained as a Normal distribution.



N [x̄, σ2
x] :

Normal distribution
with average, x̄
with variance, σ2

x




p(x) =
1√
2πσx

e
− (x−x̄)2

2σ2
x
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Generation of Random Noise Generation of Random Noise

Arbitrary random distribution using coordinate transform

Coordinate change using y = f(x)
from Px(X < x) to Py(Y < y).

∆P

y = f(x)

00

11

xmin xmax

x

Px(x)

ymin ymax

y

Py(y)

∆P = px(x) dx ∆P = py(y) dy

px(x) dx = py(y) dy

We can obtain the transformation
f(x) from X ∼ U [0, 1] (px(x) = 1)
so that py(y) satisfies above the Eq.

Exponential distribution
py(y) = e−y

dx = e−y dy

→ x = −e−y → y = − log x

The exponential random distri-
bution can obtained by transform
with y = − log x where x is uni-
form random number.

Randoms obeying Normal dist.
py(y) =

1√
2π

e−
y2

2

x =
1√
2π

∫ y

−∞
e−

y2

2 dy =
1 + erf(y2 )

2

→ y = 2erf−1 (2x− 1)

erf−1 is not implemented in computers.
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Generation of Random Noise Generation of Random Noise

Normal random number using Box-Muller method

Multi-dimensional probability distribution:

py(y1, y2, · · · ) dy1 dy2 · · · = px(x1, x2, · · · ) dx1 dx2 · · ·
= px(x1, x2, · · · )|J | dy1 dy2 · · ·

Assume x1, x2 are independent.
X1,X2 ∼ U [0, 1]
(px(x1, x2) = px(x1)px(x2) = 1)

{
y1 =

√
−2 log x1 cos (2πx2)

y2 =
√
−2 log x1 sin (2πx2)

(1)

x1 and x2 are





x1 = e−
y21+y22

2

x2 =
1
2π tan−1

(
y2
y1

)

|J | =
∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣ =
1

2π
e−

y21+y22
2

=

(
1√
2π

e−
y21
2

)(
1√
2π

e−
y22
2

)

= py(y1)py(y2)

The pair (y1, y2) has Normal distribution
with N [0, 1], which is obtained by Eq. (1)
using a pair of (x1, x2) with U [0, 1].
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Convolution and Response Function

4. Convolution and Response Function

i(t) o(t)

i(x) o(x)
g

gtime

space

delay
relaxation

blur

o(t) =

∫ ∞

0
g(τ)i(t − τ) dτ

=

∫ t

−∞
i(τ)g(t − τ) dτ ≡ g(t) ∗ i(t) ≡ (g ∗ i)(t)

o(x) =

∫ ∞

−∞
g(ξ)i(x − ξ) dξ

=

∫ ∞

−∞
i(ξ)g(x − ξ) dξ ≡ g(x) ∗ i(x) ≡ (g ∗ i)(x)

Since input is considered as reason, and output as result, the output is considered as integral of

the input.

The response does not depend on absolute time. It only depend on the time difference between

input and output.

The output is an integral of the product between input and weight depending time difference.

The difference of time and spatial domain is only the region of integral. (Causality)

※ The convolution is similar to the cross-correlation but sign of the argument is inverted.
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Convolution theorem Convolution theorem

4.1 Convolution theorem

Convolution theorem
If o(x) is represented as a convolution of g(x) and i(x),

i(x) o(x)g(x)

I(k) O(k)G(k)

o(x) = g(x) ∗ i(x)
O(k) = G(k) · I(k)





F (k) =

∫
f(x) e−ikx dx

f(x) =
1

2π

∫
F (k) e+ikx dk

o(x) =

∫

ξ
g(ξ) i(x − ξ) dξ

O(k) =

∫

x
o(x) e−ikx dx

=

∫

x

(∫

ξ
g(ξ) i(x − ξ) dξ

)
e−ikx dx

=

∫

ξ
g(ξ)

(∫

x
i(x− ξ) e−ikx dx

)
dξ

=

∫

ξ
g(ξ)

(∫

x
i(x− ξ) e−ik(x−ξ) dx e−ikξ

)
dξ

(x′ = x− ξ)

=

(∫

ξ
g(ξ) e−ikξ dξ

)
·
(∫

x′
i(x′) e−ikx′

dx′
)

= G(k) · I(k)

65 / 197



Response Function Response Function

4.2 Response Function

Sensor+PC

i

o

(i1)
(i2)

(i3)

(o3)G1 G2

G3

o1

o2

Object LensLens

on(r) =

∫
gn(ξ) in(r − ξ) dξ

= (gn ∗ in)(r) = in+1(r)

On(k) = Gn(k) In(k) = In+1(k)

o(r) = (gN ∗ (· · · ∗ (g1 ∗ i)))(r), O(k) =

(
N∏

n=1

GN (k)

)
I(k)

The response function of a whole system equals to the
products of response functions of each components.

When the response function in each system is known,
i(r) can be obtained from o(r).

66 / 197



Convolution and Response Function

Measurement of Response function

Response func. of pin-hole
(i(r) = δ(r))

o(r) =

∫
g(r − ξ) δ(ξ) dξ = g(r)

O(k) = G(k)

o(r): Point Spread Function
O(k): Point Response Function

Response func. of slit (i(r) = δ(x))
ox(r): Line Spread Function
Ox(k): Line Response Function

Is there an ideal pin hole or slit?

Response of edge (ie(r) = θ(x))
(
θ : step func., dθ

dx = δ(x)
)

oe(x) =

∫
gx(x− ξ) θ(ξ) dξ =

∫
gx(ξ

′) θ(x− ξ′) dξ′

doe(x)

dx
=

d

dx

∫
gx(ξ

′) θ(x− ξ′) dξ′

=

∫
gx(ξ

′)
dθ(x− ξ′)
d(x− ξ′)︸ ︷︷ ︸
δ(x−ξ′)

d(x− ξ′)
dx︸ ︷︷ ︸
=1

dξ′

=

∫
gx(ξ

′) δ(x − ξ′) dξ′ = gx(x)

Gx(kx) =

∫
gx(x) e

−ikxx dx =

∫
doe
dx

e−ikxx dx

=
[
oe(x) e

−ikxx
]∞
−∞︸ ︷︷ ︸

=0 (∵oe(±∞)=0)

+ikx

∫
oe(x) e

−ikxx dx

= ikxOe(kx)

Oe(k): Edge Response Function
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Deconvolution Deconvolution

4.3 Deconvolution

A blurred image and the PSF of whole system is known.
→ F {Blurred} and F {PSF} are also known.

We wish to reconstruct the true image.

True

∗

PSF

=

Blurred

(IFT)↑↓(FT) (IFT)↑↓(FT) (IFT)↑↓(FT)
F {True} (log | · · · |)

•

F {PSF} (log | · · · |)

=

F {Blurred} (log | · · · |)

True’ = F−1

{F {Blurred}
F {PSF}

}
(Deconvolution)
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Convolution and Response Function

Example of reconstruction from blurred image

True

∗

PSF

=

Blurred

((IFT)↑↓(FT)) (IFT)↑↓(FT) (IFT)↑↓(FT)
F {Estimate} (log | · · · |)

•

F {PSF} (log | · · · |)

=

F {Blurred} (log | · · · |)

↓(IFT)
Deconvolved

In F {Blurred} /F {PSF},
it has a divergence if the
denominator is small.

↓
Since special treatments
are applied (discuss in later

days) to avoid divergence,
True 6= Deconvoluted




※ In this example,
it reconstructed only
from
the Blurred image,
i.e., PSF is also
unknown.




true image: http://www-2.cs.cmu.edu/~chuck/lennapg/lena std.tif
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Noise Reduction using Moving average

5. Noise Reduction using Moving average

Observed data including noise
f(xi) = f̃(xi) + n(xi)
(i ∈ {1, · · · , Nall})

Ave. Method Num. of Ave.

whole data 1
Ave. for M groups M < Nall

Moving Average N ′
all ∼ Nall

x

f(x)
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Noise Reduction using Moving average

5. Noise Reduction using Moving average

Observed data including noise
f(xi) = f̃(xi) + n(xi)
(i ∈ {1, · · · , Nall})

Ave. Method Num. of Ave.

whole data 1
Ave. for M groups M < Nall

Moving Average N ′
all ∼ Nall

x

f(x), g(x)
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Moving Average Moving Average

5.1 Moving Average

Averages are computed while replacing a part of samples.

x

f(x)
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Moving Average Moving Average

5.1 Moving Average

Averages are computed while replacing a part of samples.

x

f(x)

Moving average with 3 points
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Moving Average Moving Average

5.1 Moving Average

Averages are computed while replacing a part of samples.

x

f(x), g(x)

Moving average with 3 points
g2 = (f1 + f2 + f3)/3
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Moving Average Moving Average

5.1 Moving Average

Averages are computed while replacing a part of samples.

x

f(x), g(x)

Moving average with 3 points
g2 = (f1 + f2 + f3)/3
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Moving Average Moving Average

5.1 Moving Average

Averages are computed while replacing a part of samples.

x

f(x), g(x)

Moving average with 3 points
g2 = (f1 + f2 + f3)/3
g3 = (f2 + f3 + f4)/3
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Moving Average Moving Average

5.1 Moving Average

Averages are computed while replacing a part of samples.

x

f(x), g(x)

Moving average with 3 points
g2 = (f1 + f2 + f3)/3
g3 = (f2 + f3 + f4)/3
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Moving Average Moving Average

5.1 Moving Average

Averages are computed while replacing a part of samples.

x

f(x), g(x)

Moving average with 3 points
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g3 = (f2 + f3 + f4)/3
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5.1 Moving Average

Averages are computed while replacing a part of samples.

x

f(x), g(x)

Moving average with 3 points
g2 = (f1 + f2 + f3)/3
g3 = (f2 + f3 + f4)/3
g4 = (f3 + f4 + f5)/3
g5 = (f4 + f5 + f6)/3
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Moving Average Moving Average

5.1 Moving Average

Averages are computed while replacing a part of samples.

x

f(x), g(x)

Moving average with 3 points
g2 = (f1 + f2 + f3)/3
g3 = (f2 + f3 + f4)/3
g4 = (f3 + f4 + f5)/3
g5 = (f4 + f5 + f6)/3

...
gi = (fi−1 + fi + fi+1)/3

gi =
∑

m′

wm′fi+m′ =
∑

m

wmfi−m

71 / 197



Relation between Moving Average and Convolution Relation between Moving Average and Convolution

5.2 Relation between Moving Average and Convolution

Moving Average≡Discrete Convolution Integral

g(x): averaged, f(x): observed

Continuous system: g(x) =

∫ ∞

−∞
w(x′)f(x− x′) dx′ (Convolution)

Discrete system: gi =

∞∑

m=−∞
wmfi−m∆x (fi ≡ f(xi))

If m is finite (Nm = 2N + 1),

gi =

N∑

m=−N

ŵmfi−m (ŵm = wm∆x) (1)

∫ ∞

−∞
w(x′) dx′ = 1 (Normalization)

(2) x

f(x), g(x)
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Simple Moving Average Simple Moving Average

5.3 Simple Moving Average

Weight w(x′) inside the window is constant

w(x′) =





const = w

(
|x′| ≤ Nm∆x

2

)

0 (elsewhere)

From Eq.(2)

∫ ∞

−∞
w(x′) dx′ = Nm∆xw

= Nmŵ = 1

ŵm =





1

Nm
(|m| ≤ N)

0 (otherwise) 0

x′

w(x′)

∆x

N∆x−N∆x

(2N + 1)∆x = Nm∆x

w
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Simple Moving Average Simple Moving Average

Comparison of Noise Reduction (original signal)

Before averaging fi = f̃i + ni

(f : obs., f̃ : true (unique), n: noise)

(
Measurement infinite times:

f j
i (j ∈ {1, · · · ,∞})

)

Average with respect to j:

E [fi] = E
[
f̃i + ni

]
= E

[
f̃i

]

︸ ︷︷ ︸
=f̃i

+E [ni]︸ ︷︷ ︸
=0

= f̃i

Variance:

σ2
fi
= E

[
(fi − E [fi])

2
]

= E
[
((f̃i + ni)− f̃i)

2
]

= E
[
n2
i

]
= σ2

ni
= σ2

n




Another method to evaluate variance

If two signals a and b have no corre-
lations,

σ2
a±b = σ2

a + σ2
b .

f̃i and ni have no correlations, and
σ2
f̃i
= 0 because f̃ is unique.

∴ σ2
fi
= σ2

f̃i
+ σ2

ni
= σ2

n



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Simple Moving Average Simple Moving Average

Comparison of Noise Reduction (Moving Average)(1)

Moving Average gi =
1

Nm

∑

m

fi−m ≡ 〈fi〉m

fi = f̃i + ni → gi =
〈
f̃i

〉
m
+ 〈ni〉m

Average with respect to j:

E [gi] = E
[〈

f̃i

〉
m

]
+ E [〈ni〉m] =

〈
E
[
f̃i

]

︸ ︷︷ ︸
=f̃i

〉
m
+
〈
E [ni]︸ ︷︷ ︸
=0

〉
m

=
〈
f̃i

〉
m

Variance:

σ2
gi = E

[
(gi − E [gi])

2
]
= E

[{(〈
f̃i

〉
m
+ 〈ni〉m

)
−
〈
f̃i

〉
m

}2
]
= E

[
〈ni〉2m

]

= E

[(∑
m ni−m

Nm

)
·
(∑

m ni−m

Nm

)]
= E

[∑
m

∑
m′ ni−mni−m′

N2
m

]

=
1

N2
m

∑

m

∑

m′

E [ni−mni−m′ ]

The variance depends on the auto-correlation of noise.
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Simple Moving Average Simple Moving Average

Comparison of Noise Reduction (Moving Average)(2)

Variation depending noise property

σ2
gi =

1

N2
m

∑

m

∑

m′

E [ni−mni−m′ ]

Case of White noise:
(ni−m and ni−m′ are independent.)

E [ni−mni−m′ ] = σ2
nδm,m′

σ2
gi =

σ2
n

N2
m

∑

m

∑

m′

δm,m′

︸ ︷︷ ︸
Nm=

σ2
n

Nm

Case of Low frequency noise
(ni−m ≃ ni−m′)

E [ni−mni−m′ ] ≃ σ2
n

σ2
gi ≃

σ2
n

N2
m

∑

m

∑

m′

1

︸ ︷︷ ︸
N2

m= σ2
n
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Simple Moving Average Simple Moving Average

Comparison of Noise Reduction (Summary)

Original Moving Average

Ave. f̃i

〈
f̃i

〉
m

(Smoothed True signal (drawback))

Var. σ2
n

White Noise (Best) Low frequency noise (Worst)
σ2
n

Nm
σ2
n

reduced to 1/Nmtimes Not reduced
(advantage)
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Simple Moving Average Simple Moving Average

Spectral Gain of simple moving average

Fourier Transform of w(x′)

w(x′) = w ≡ 1

2Xm(
|x′| ≤ Xm =

Nm∆x

2

)

W (k) =

∫ ∞

−∞
w(x′)e−ikx′

dx′

=
1

2Xm

∫ Xm

−Xm

e−ikx′
dx′

=
1

−2ikXm
(e−ikXm − e+ikXm)

=
sin(kXm)

kXm
= sinc(kXm)

Xm−Xm 0 x

w(x)

w

1 sinc(θ)

±1
θ

θ

(θ = kXm)

0 π 2π 3π−π−2π−3π
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Simple Moving Average Simple Moving Average

Spectral Gain of simple moving average (cont.)

g(x) = w(x) ∗ f(x)
G(k) = W (k) · F (k)

W (k) = sinc(kXm)

(Xm = Nm∆x
2 )

Moving average can filtrate higher
frequency components.

k

W (k)

N = 3
N = 5
N = 7

0

1

kmin kmax

However, G(k) = W (k)F (k) = W (k)
[
F̃ (k) +N(k)

]

= W (k)F̃ (k) +W (k)N(k)

Since the higher frequency components of the true signal, f̃(x), are
reduced as well as those of the noise (n(x)), the true signal is distorted.
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Simple Moving Average Distortion and Spurious Resolution

5.4 Distortion and Spurious Resolution

Distortion of true signal by moving average
(f(x) = sin((k0 +

dk
dxx)x), σ2

n = 0)
Nm

3

5

7

9

11

13

15

17

19

21

With increasing number of
sampling Nm, intensity of higher
frequency components become
smaller.

↓
The choice of appropriate Nm

is important.

When Nm is large, intensity
becomes larger at higher frequency
but those patterns are inverted.
(Spurious resolution)
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Simple Moving Average Distortion and Spurious Resolution

5.4 Distortion and Spurious Resolution

Distortion of true signal by moving average
(f(x) = sin((k0 +

dk
dxx)x), σ2

n = 0)
Nm

3

5

7

9

11

13

15

17

19

21

(Contrast is enhanced)

With increasing number of
sampling Nm, intensity of higher
frequency components become
smaller.

↓
The choice of appropriate Nm

is important.

When Nm is large, intensity
becomes larger at higher frequency
but those patterns are inverted.
(Spurious resolution)

80 / 197



Simple Moving Average Distortion and Spurious Resolution

Cause of Spurious Resolution

1 sinc(θ)

±1
θ

θ

(θ = kXm)

0 π 2π 3π−π−2π−3π

With increasing k, W (k) is reduced.
W (k) becomes 0 at kXm = π.
After that it becomes negative.
W (k) < 0→ Inversion of intensity.

The spurious resolution is found in
other filtering.
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Noise Reduction using Moving average Multiple moving average

5.5 Multiple moving average

In the case of applying two times,

gi =
∑

m

wmfi−m

hi =
∑

m′

wm′gi−m′

(gi−m′ =
∑

m

wmfi−m′−m)

=

N∑

m′=−N

N∑

m=−N

wm′wmfi−m′−m

When Nm = 3(N = 1), wm = w′
m = 1/3

gi =
fi−2 + 2fi−1 + 3fi−1 + 2fi+1 + fi+2

9

0

x′

w(x′)

∆x

N∆x−N∆x

(2N + 1)∆x = Nm∆x

w

Applying multiple moving aver-
age is equivalent to moving av-
erage with which central weight
is larger than neighboring points.
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Noise Reduction using Moving average

Spectral Gain of Multiple Moving Average

In the case of two times,

g(x) =

∫ ∞

−∞
w(x′)f(x− x′) dx′ → G(k) = W (k)F (k)

h(x) =

∫ ∞

−∞
w(x′)g(x − x′) dx′ → H(k) = W (k)G(k)

= W 2(k)F (k)

1 sinc(θ)

sinc2(θ)

θ

(θ = kXm)

0 π 2π 3π−π−2π−3π
Further reduction of higher
frequency components is applied.

No spurious resolution.
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Noise Reduction using Moving average Higher order Moving average (Savitzky-Golay filter)

5.6 Higher order Moving average (Savitzky-Golay filter)

For each i,

Represent the smoothed function gi(xj)
by a power series expansion.

(j ∈ {i−N, · · · , i+N})
(In the case of second order expansion,)

gi(xj) = ai(xj − xi)
2 + bi(xj − xi) + ci

= ai∆x2j,i + bi∆xj,i + ci x

gi

fi

fi+1

fi+2

fi−1

fi−2

xi xi+1xi+2xi−1xi−2

Using by the least square method, determin the parameter ai, bi,
and ci which are the parameter of the fitting function gi(xj).

The moving average at the point i corresponds to the value of the
fitting function at the xj = xi; i.e gi(xi) = ci.
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Noise Reduction using Moving average

Least square fitting to the parabolic function

Fitting function
gj = a∆x2j + b∆xj + c ((omit i))

Minimize Average of square residual, E:

E(a, b, c) =
1

Nm

i+N∑

j=i−N

(gj − fj)
2 ≡ (gj − fj)2

minimize E(a, b, c) ⇐⇒ ∂E
∂ξ = 0 (ξ ∈ {a, b, c})

(
∂E
∂ξ = ∂

∂ξ (gj(ξ)− fj)2 = 2(gj(ξ)− fj)
∂gj(ξ)
∂ξ

∂gj
∂a = ∆x2j ,

∂gj
∂b = ∆xj,

∂gj
∂c = 1

)




∆x4j ∆x3j ∆x2j
∆x3j ∆x2j ∆xj

∆x2j ∆xj 1







a
b
c


 =




fj∆x2j
fj∆xj
fj



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Noise Reduction using Moving average

Least square fitting to the power series

Fitting function

f̃(x;a) =

Nl∑

l=0

alx
l,

a = (a0, a1, · · · , aNl
)

Sampling points (known)
(xi, fi), i ∈ {1, · · · , N}

Minimize Average of
square residual, E

E(a) =
1

Ni

Ni∑

i=1

(f̃(xi;a)− fi)
2

≡ (f̃(xi;a)− fi)2

minimize E(a) ⇔ ∂E

∂al
= 0

(
∂E
∂al

= ∂
∂al

(f̃i − fi)2 = 2(f̃i − fi)
∂f̃i
∂al

= 2
(
f̃ixli − fixli

)
= 0

(
∵ ∂f̃i

∂al
= xl

)

)

∴

Nl∑

l=0

xl+m
i al = fix

m
i




x0 x1 · · · xNl

x1 x2 · · · xNl+1

...
...

. . .
...

xNl xNl+1 · · · xN2l







a0
a1
...

aNl


 =




fix
0
i

fix1i
...

fix
Nl

i




The parameter of the least square fitting
to power series function (non-linear func-
tion) can be obtained by solving a set of
linear equations.
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Noise Reduction using Moving average

Moving average by parabolic fitting



∆x4j ∆x3j ∆x2j
∆x3j ∆x2j ∆xj

∆x2j ∆xj 1







a
b
c


 =




fj∆x2j
fj∆xj
fj




In the case of Nm = 5(N = 2)



∆xj = 0, ∆x3j = 0,

∆x2j/∆
2 = (−2)2+(−1)2+02+(+1)2+(+2)2

5 = 2(12+22)
5 = 2,

∆x4j/∆
4 = 2(14+24)

5 = 34
5




c =

∣∣∣∣∣∣

34
5 ∆

4 0 fj∆x2j
0 2∆2 fj∆xj

2∆2 0 fj

∣∣∣∣∣∣

/∣∣∣∣∣∣

34
5 ∆

4 0 2∆2

0 2∆2 0
2∆2 0 1

∣∣∣∣∣∣

=
68
5 ∆

6fj − 4∆4fj∆x2j
28
5 ∆

6

Num. =
68[f−2 + f−1 + f0 + f1 + f2]

5
∆6

− 4[(−2)2f−2 + (−1)2f−1 + 02f0 + 12f1 + 22f2]∆
2

5
∆4

= ∆6
((

68
25 − 16

5

)
(f−2 + f+2) +

(
68
25 − 4

5

)
(f−1 + f+1) +

68
25f0

)

gi = c

=
1

35
( −3 12 17 12 −3 )




fi−2

fi−1

fi
fi+1

fi+2




The weight at point i is
maximum.

The weights at both ends are
negative.

W (k)

k

W (k)

0

1

kmin kmax

W (k) is flat in low frequency.
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Noise Reduction using Moving average Gaussian Filter

5.7 Gaussian Filter

Gaussian filter:
≡ Moving average with which the weight, w(x′), is a Gaussian

function.

w(x) =
1√
2πσx

e
− x2

2σ2
x

F
=⇒ W (k) = e

− k2

2σ2
k

(
σk = 1

σx

)

(proof is shown in the next page.)

W (k) is a simple decreasing function.

W (k) > 0 → No spurious resolution.
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Noise Reduction using Moving average Gaussian Filter

Fourier Transform of Gaussian function

W (k) = F {w(x)}

=
1√
2πσx

∫ ∞

−∞
e
− x2

2σ2
x e−ikx dx

(X = x√
2σx

)

=
1√
π
e−

σ2
x
2
k2
∫ ∞

−∞
e
−(X+i kσx√

2
)2
dX

︸ ︷︷ ︸
=
∫
e−X2 dX=

√
π (∗)

= e−
σ2
x
2
k2 = e

− 1

2σ2
k

k2

(σk = 1
σx
)

F
{
e
− x2

2σ2
x

}
∝ e−

σ2
xk2

2

(∗)


I =

∫ ∞

−∞
e−(x+ib)2 dx

=

∫ ∞−ib

−∞−ib
e−z2 dz

Z

x

y

−R +R

−ibc
(R→∞)

(No poles)∫

c
e−z2 dz = 0 → I =

∫ ∞

−∞
e−x2

dx







I2 =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy

=

∫ 2π

0

∫ ∞

0
e−r2r dθ dr (t = r2)

= −π
[
e−t
]∞
0

= π

∴ I =
√
π



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Noise Reduction using Moving average Cummulative Average of muliple measurement

5.8 Cummulative Average of muliple measurement

Nk sets of measurement.
f
(k)
i = f̃i + n

(k)
i

(k ∈ {1, · · · , Nk})

Cummulative Ave.

〈〈yi〉〉 ≡
1

Nk

Nk∑

k=1

y
(k)
i

Cummul. Ave. of fi
gi = 〈〈fi〉〉 = f̃i + 〈〈ni〉〉

Expected value : E [gi]

E [gi] = f̃i + E [〈〈ni〉〉]︸ ︷︷ ︸
=〈〈E[ni]〉〉=0= f̃i

Variance of gi : σ
2
gi (※ 6= Var. of fi)

σ2
gi = E

[
(gi − E [gi])

2
]
= E

[{
(f̃i + 〈〈ni〉〉)− f̃i

}2
]

= E
[
〈〈ni〉〉2

]
= E

[
1

N2
k

∑

k

∑

k′

n
(k)
i n

(k′)
i

]

= E

[
1

N2
k

∑

k

((
n
(k)
i

)2
+
∑

k′ 6=k

n
(k)
i n

(k′)
i

)]

=

∑

k

σ2
n︷ ︸︸ ︷

E

[(
n
(k)
i

)2]

N2
k

+

∑

k

∑

k′ 6=k

0︷ ︸︸ ︷
E
[
n
(k)
i n

(k′)
i

]

N2
k

=
1

N2
k

Nk∑

k=1

σ2
n =

σ2
n

Nk

√
σ2
gi is called standard error.
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Noise Reduction using Moving average Cummulative Average of muliple measurement

Comparison of Cummulative Ave. and Moving Ave.

Original
Moving
Average

Cummulative
Average

Ave. f̃i

〈
f̃i

〉
m

f̃i

Var.* σ2
n

σ2
n

Nm

σ2
n

Nk



* for White Noise
Nm : Number of averaging samples
Nk : Number of times of measurement




The expected value of average is distorted by moving average, but
not distorted by cummulative average.

The variances become smaller for both averaging.

If we can obtain measurements under same condition, cummlative
average is superior.
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Noise Reduction using Moving average Propagation of Error

5.9 Propagation of Error

Two independent measurements, f and g (|df | ≪ |f̃ |, |dg| ≪ |g̃|) :

f = f̃ + df, E [f ] = f̃ , E [df ] = 0, E
[
(df)2

]
= σ2

f

g = g̃ + dg, E [g] = g̃, E [dg] = 0, E
[
(dg)2

]
= σ2

g

Consider evaluetion of a new result : h ≡ h(f, g) = h̃(f, g) + dh(f, g)

Average:

dh =
∂h

∂f

∣∣∣∣
(f̃ ,g̃)

df +
∂h

∂g

∣∣∣∣
(f̃ ,g̃)

dg

= h′fdf + h′gdg

E [dh] = h′fE [df ] + h′gE [dg]

= 0

E [h] = E
[
h̃+ dh

]
= h̃(f̃ , g̃)

Variance:
σ2
h = E

[
(dh)2

]
= E

[(
h′fdf + h′gdg

)2]

= h′f
2
E
[
df2
]

︸ ︷︷ ︸
σ2
f

+h′g
2
E
[
dg2
]

︸ ︷︷ ︸
σ2
g

+2h′fh
′
g E [df · dg]︸ ︷︷ ︸

=0

=

(
∂h

∂f

∣∣∣∣
h̃

)2

σ2
f +

(
∂h

∂g

∣∣∣∣
h̃

)2

σ2
g
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Noise Reduction using Moving average Propagation of Error

Example of Error Propagation

h ≡ h(f, g)

σ2
h =

(
∂h
∂f

∣∣∣
h̃

)2
σ2
f +

(
∂h
∂g

∣∣∣
h̃

)2
σ2
g

Add. and Sub.
◮ h = f + g

σ2
h = σ2

f+g = σ2
f + σ2

g
◮ h = f − g

σ2
h = σ2

f−g = σ2
f + σ2

g

Sum of each Variance.

Mul. and Div.
◮ h = f · g

σ2
h = σ2

f ·g = g2σ2
f + f2σ2

g

σ2
h

h2
=

σ2
f

f2
+

σ2
g

g2
◮ h = f/g

σ2
h = σ2

f/g = 1
g2 σ

2
f + f2

g4 σ
2
g

σ2
h

h2
=

σ2
f

f2
+

σ2
g

g2

Sum of each normalized Variance.
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Image data Image sensor

6. Image data
6.1 Image sensor

Image Sensor
◮ CCD (Charge Coupled Device)
◮ CMOS (Complementary MOS(Metal Oxide Semiconductor))

CCD CMOS

detection Photo diode (Photo electron emission/excitation)

Sensitivity
High Low(High recently)

Amplifier,
A/D converter

one for whole pixels one for each pixel

Readout Bucket relay Addressing
(only whole pixels
reading)

(possible to read
one pixel)

Defect pixel
None Existing
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Image data Image sensor

CCD

Circuit Bucket Relay

V (t0)

V (t1)

V (t2)

V (t3)

V (t4)

Photo diode

95 / 197



Image data Image sensor

CMOS

Circuit
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Image data Image sensor

Color Camera

three chips (high quality)

Separating color by using prisms,
each of which can reflect a
certain color. Separated beams
are detected each sensor.

R

G

B

one chip (small size)

Color filter is placed in front of
sensor.

97 / 197



Image data Signal to Noise ratio and Resolution

6.2 Signal to Noise ratio and Resolution

Charge accumuration by photo
diode

iin(t)

vout(t)

I(t)

C SW

PD

Incident Light I(t) ∝ iin(t)
◮ SW=ON(close) : vout(t) = 0
◮ SW=OFF(Open) (t = [0, T ])

vout(T ) =
1
C

∫ T

0 iin(t) dt

If I(t) = I (const.),
vout(T ) = kIT .

Signal is proportional to T .

I includes fluctuation :
I(t) = I + δI(t)→ I ± σδI
δvout(T ) = k

∫ T
0 δI(t) dt

1
T

∫ T
0 δI(t) dt = 〈〈δI〉〉
≡ Cummul. ave. of δI(t)

σ〈〈δI〉〉 ∝ σδI/
√
T (δI is white)

σvout(T ) = Tσ〈〈δI〉〉 = k′σδI
√
T

Noise is proportional to
√
T .

Signal to Noise Ratio S/N :
S/N ∝

√
T

The quality of signal increases
with increasing T .
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Image data Signal to Noise ratio and Resolution

Area of Pixel A

iin(t) ∝
∫

A
I(t, x, y) dA

◮ I(t, x, y) = I :
vout(A) = kIA

vout is proportional to A.

◮ I(t, x, y) = I + δI(t, x, y) :
δvout = k

∫
A δI(t, x, y) dA

σ〈〈δI〉〉 ∝ σδI/
√
A

σvout(A) = k′σδI

√
A

vout is proportional to
√
A.

Signal to Noise Ratio S/N :
S/N ∝

√
A

The quality of signal increases
with increasing pixel size A.

Resolution

◮ Temporal resolution ⇔Exposure
time

◮ Spatial resolution ⇔Pixel Size

S/N Resolution
Larger
is better

Smaller
is better

time ∝
√
T T

space ∝
√
A

√
A
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Image data Discretization and Quantization

6.3 Discretization and Quantization

Discretization and Quantization
Continuous functionf(x)

(x ∈ R, f(x) ∈ R)

◮ Discretization:
(Digitizing Domain)
xn = n∆x, n ∈ Z

◮ Quantization:
(Digitizing Range of f)
fm = m∆f , m ∈ Z

Image Data
◮ Pixel : Discrete point

⇔ i, j ∈ Z

(e.g. 640×400, 1024×768)

◮ Intensity : Quantized of
brightness

⇔ Ii,j ∈ Z

A/D (Analog to Digital) converter




e.g.
8bits (0,· · · , 255)

10bits (0,· · · , 1023)
12bits (0,· · · , 4095)



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Image data Correction of Intensity

6.4 Correction of Intensity

γ correction



Ii
Record
=⇒ fr

Display
=⇒ Io

Display device
Gain of CRT is not linear

→ Io 6∝ fr
Io ∝ fγd

r (e.g. γd = 2.2)

Recording device
fr ∝ Iγri




∴ Io = Iγr ·γdi

In general, recording device has
γr = 1/γd so that Io = Ii.

This is not appropriate to
quantitative processing.

If we wish quantitative
evaluation, apply the cancelation
of the γ correction

f̂ = f
1/γr
r ∝ Ii.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

O
ut

pu
t

Input

γ = 2.2

xγ
x

1
γ

101 / 197



Image data Image format

6.5 Image format

Single format

Format Name Color bit Compres. Revers. Multi-
image

PBM Portable Bit Map White/Black 1 × ○ ×
PGM Portable Gray Map Gray 8 × ○ ×
PPM Portable Pixel Map RGB 3×8 × ○ ×
GIF Graphics Interchange

Format
RGB 3×8 ○ ○ ○

JPEG Joint Photographic
Experts Group

RGB 3×8 ○ × ×

PNG Portable Network
Graphics

RGB-alpha∗ 4×16 ○ ○ ×

* : alpha is a channel for transparency

Integrated Multiple formats
Format Name

PNM Portable aNy Map (PBM, PGM, PPM)

TIFF Tagged Image File Format

BMP Microsoft windows BitMaP
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Simple filter for image using convolution Smoothing using Moving Average

7. Simple filter for image using convolution
7.1 Smoothing using Moving Average

gi,j =
∑

m,n

wm,nfi+m,j+n m,n ∈ −N, . . . ,N, Nm = 2N + 1

size Simple ave. Square pyramid circular Gaussian like

3×3
(
Nm = 3
N = 1

)
1 1 1

1 1 1

1 1 1

×1/9

1 1 1

1 2 1

1 1 1

×1/10

0 1 0

1 1 1

0 1 0

×1/5

1 2 1

2 4 2

1 2 1

×1/16

5×5
(
Nm = 5
N = 2

)

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

×1/25

1 1 1 1 1

1 2 2 2 1

1 2 3 2 1

1 2 2 2 1

1 1 1 1 1

×1/35

0 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 1 1 1 0

0 0 1 0 0

×1/13

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

×1/256
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Simple filter for image using convolution Smoothing using Non-linear Filter

7.2 Smoothing using Non-linear Filter

Since the moving average losses higher
frequency component, edges and corners
in the original image are blurred.

fi+m,j+n

0 0 9 9 9

0 0 9 9 9

0 0 9 9 9

0 0 18 18 18

0 0 18 18 18

∗
wm,n

1 1 1

1 1 1

1 1 1

=

gi,j

0 3 6 9 9

0 3 6 9 9

0 4 8 12 12

0 5 10 15 15

0 6 12 18 18

Median filter
Reducible the blurring edges

Adaptive local averaging
filter
Reducible the blurring
corners

Note:
These filters are irreversible.
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Simple filter for image using convolution Smoothing using Non-linear Filter

Median Filter

Replace the pixel value at the central pixel in partial region by the median
in the region.

fi,j
1© 3© 2© 3 1

4© 5© 1© 9 5

6© 5© 8© 6 6

1 2 7 5 7

1 2 8 4 4

sort and select median
© : 1, 1, 2, 3, 4

Median
, 5, 5, 6, 8

: 4, 4, 5, 7
Median: 4+5

2 = 4.5

⇓
gi,j

3.5 2.5 4 2.5 4

4.5 4 5 5 5.5

4.5 5 5 6 6

2 5 5 6 5.5

1.5 2 4.5 6 4.5

⇐

gi,j

∗ ∗ ∗ ∗ ∗
∗ 4 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 4.5

Reduction of blurring of edges.
Input:

0 0 9 9 9

0 0 9 9 9

0 0 9 9 9

0 0 18 18 18

0 0 18 18 18

Moving Average

0 3 6 9 9

0 3 6 9 9

0 4 8 12 12

0 5 10 15 15

0 6 12 18 18

Median Filter
0 0 9 9 9

0 0 9 9 9

0 0 9 9 9

0 0 9 18 18

0 0 18 18 18
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Simple filter for image using convolution Smoothing using Non-linear Filter

Adaptive Local Averaging Filter

Sampling patterns:

© © ©
© ×© ©
© © ©

9 points
(Symmetric(×1))

(C)

© © ©
© © ©
×©

7 points
(× 4 patterns)
(N,W,S,E)

© ©
© © ©
×© ©

7 points
(× 4 patterns)

(NE,NW,SW,SE)

Evaluate variance for each pattern.
σ2
(p) (p ∈ {C, N,W,S,E, NE,NW,SW,SE})

gi,j is taken as the average f
(p)
i,j with

minimum variance σ2
(p).

Reduction of blurring of edges.

Input
0 0 9 9 9

0 0 9 9 9

0 0 9 9 9

0 0 18 18 18

0 0 18 18 18

Moving Average

0 3 6 9 9

0 3 6 9 9

0 4 8 12 12

0 5 10 15 15

0 6 12 18 18

Median Filter
0 0 9 9 9

0 0 9 9 9

0 0 9 9 9

0 0 9 18 18

0 0 18 18 18

Adapt. Local Ave.

0 0 9 9 9

0 0 9 9 9

0 0 9 9 9

0 0 18 18 18

0 0 18 18 18
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Simple filter for image using convolution Remove defect pixel

7.3 Remove defect pixel

Defect pixel : Pixels with fi,j = 0 or fi,j = 255(Max.)

Reason : Difference of gain between pixels.

Apply the Median filter to only the defect pixels.

Original Defects
Median for

whole image
Median for

defect pixel

defects removed removed
smoothed Not smoothed
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Simple filter for image using convolution Edge detection

7.4 Edge detection

Edge: Points having local maximum of the gradient (|∇f |).
Edge detection by gradient

Derivative

df

dx
= lim

∆→0

f(x+ ∆
2 )− f(x− ∆

2 )

∆

= lim
∆→0

f(x+∆)− f(x−∆)

2∆

Difference(∆ 6= 0)

∆f

∆x
=

f(x+∆)− f(x−∆)

2∆

=
1

2
(fi+1 − fi−1)

df

dx
≃ ∆f

∆x

gi,j =
∑

m,n

wm,nfi+m,j+n

(
m,n ∈ −N, . . . ,N
Nm = 2N + 1

)

Example of wm,n

∇f · ex
0 0 0
−1
2 0 1

2

0 0 0

∇f · ey
0 1

2 0

0 0 0

0 −1
2 0

∇f · (ex + ey)

0 0 1
2
√
2

0 0 0
−1
2
√
2
0 0

∇f · (ex − ey)
−1
2
√
2
0 0

0 0 0

0 0 1
2
√
2
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Simple filter for image using convolution Edge detection

Example of Edge detection

Original ∇f · ex ∇f · ey |∇f |

|∇f | (inverted)∇f · ex, ∇f · ey embosses image.

By ∇f · ex, the vertical edge can be detected,
but horizontal one cannot.

|∇f | is useful for edge detection.
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Simple filter for image using convolution Enhancement of Edge

7.5 Enhancement of Edge

Using Laplacian

Consider curvature (f ′′(x))

f(x)

f ′(x)

f ′′(x)

f(x)− kf ′′(x)

Enhancement of Edge :

g(r) = f(r)− k∇2f(r)




Second derivative

1-dim. f ′′
i = f ′

i+1/2 − f ′
i−1/2

= fi+1 + fi−1 − 2fi

2-dim. Laplacian(∇2f)
f ′′
i,j = fi+1,j+fi−1,j+fi,j+1+fi,j−1−4fi,j




In the case k = 1,

f

0 0 0

0 1 0

0 0 0

−

(∇2f)

0 1 0

1 −4 1

0 1 0

=

f − (∇2f)

0 −1 0

−1 5 −1
0 −1 0
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Simple filter for image using convolution Enhancement of Edge

Example of Edge Enhancement(using Laplacian)

Smoothed Enhance(k = 2) Enhance(k = 4) Original
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Simple filter for image using convolution Enhancement of Edge

Using diff. from Smoothed

Consider diff. from smoothed one
(f(x)− f(x))

f(x)

f (x)

∆f(x) = f (x)− f(x)

f(x)− k∆(x)

Enhancement of Edge :

g(r) = f(r)− k
(
f(r)− f(r)

)

= (1 + k)f(r)− kf(r)

In the case k = 1 and 3x3 simple ave.,
g = 2f − f

2f

0 0 0

0 2 0

0 0 0

−

f
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

=

2f − f
−1
9

−1
9

−1
9

−1
9

17
9

−1
9

−1
9

−1
9

−1
9
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Simple filter for image using convolution Enhancement of Edge

Example of Edge Enhancement(using diff. from smoothed)

Smoothed Enhance(k = 2) Enhance(k = 4) Original
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Simple filter for image using convolution Frequency distribution (Histogram)

7.6 Frequency distribution (Histogram)

Histogram → Used for binarizing or labeling

 0

 500

 1000

 1500

 2000

 2500

 0  64  128  192  256

Intensity

Frequency distribution of Image (512x512)

In this example the thresholds are about 64, 100, 126, 180.
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Simple filter for image using convolution Binarizing

7.7 Binarizing

Binarizing : Distinguish either true or false of a condition
1: True, 0: False

Comparison with threshold
e.g. f(x, y) ≥ fth

Solutions (Points) of equations
e.g. f(x, y) = a

Solution of f(x, y) = a

(f(x, y)− a) · (f(x′, y′)− a) ≤ 0

((x′, y′)is adjacent pixels of (x, y))
In the case of 4 direction search:

f ≥ 128 f = 128

∣∣∣∂f∂x
∣∣∣ > 5 ∂f

∂x = 5

115 / 197



Simple filter for image using convolution Partitioning

7.8 Partitioning

Partitioning by Edge

Edge: Points with local max. of |∇f |.
→ Solution of ∇2f = 0?




∇2f = ∂2f
∂x2 + ∂2f

∂y2

Even if ∂2f
∂x2 6= 0 and ∂2f

∂y2 6= 0 ,

in the case of ∂2f
∂x2 = −∂2f

∂y2
,

∇2f = 0. →×




∴ r =
{
(x, y)

∣∣∣∂
2f

∂x2 = 0, ∂2f
∂y2

= 0
}

However, this is also inappropriate.
∵ The second derivatives have
high frequency component,
there are many zeros.

(Max: White, Min: Black)
∂2f
∂x2 [-20,20] ∂2f

∂y2
[-20,20]

∂2f
∂x2 = ∂2f

∂y2 = 0

(
= 0 : White
6= 0 : Black

)
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Simple filter for image using convolution Partitioning

Improvement of the solution search algorithm

Methods to find the sol. of ∂2f
∂x2 = 0.

Simple search
f ′′
i · f ′′

i+1 < 0 or f ′′
i · f ′′

i−1 ≤ 0
→ Broaden

Use of average of half shifted
points.
f ′′
i+1/2 · f ′′

i−1/2 ≤ 0 → f ′′
i = 0(

f ′′
i±1/2 =

f ′′
i +f ′′

i±1

2

)

→ This can avoid
broadening.

Simple method Ave. of Half shifted pix.

(White:Solution)

Solution is improved. However, it remains many solutions because of
higher freq. components.
→Coupling method with other methods is required.
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Simple filter for image using convolution Partitioning

Edge detection by |∇f |

Edge: Points having local maximum
of the gradient (|∇f |).

=⇒ Points having large gradient.

Problem :

Appropriate threshold
|∇f | > |∇f |0

Broaden edges
◮ Use with the second derivative.
◮ Use of variance of gradient.

Variance of gradient

∇f = (f ′
x, f

′
y)

σ2
∇f = σ2

f ′
x
+ σ2

f ′
y
, σ̂∇f =

σ∇f

|∇f |
Condition of edge:

|∇f | > |∇f |0
σ̂∇f < σ̂∇f 0

∂2f
∂x2 = ∂2f

∂y2
= 0
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Simple filter for image using convolution Partitioning

Example of Edge detection by |∇f |

|∇f | ≥ 8,
f′x′x = f′y′y = 0

σ∇f/ |∇f | ≤ 0.7,
f′x′x = f′y′y = 0

|∇f | ≥ 8,
σ∇f/ |∇f | ≤ 0.7

|∇f | ≥ 8,
σ∇f/ |∇f | ≤ 0.7,
f′x′x = f′y′y = 0

|∇f | ≥ 8,
σ∇f/ |∇f | ≤ 0.7,
f′x′x = f′y′y = 0

Disconnected edge
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Simple filter for image using convolution Partitioning

Expansion and Contraction of Binary image

Expansion

gi,j =

{
1 One of neighbors has 1.

0 otherwise
Connect regions

Contraction

gi,j =

{
0 One of neighbors has 0.

1 otherwise

Disconnect a region,
Remove isolated point.

Original

⇓
Expansion

⇓
Contraction

Original

⇓
Contraction

⇓
Expansion

Expansion 6= Inv{Contraction}
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Simple filter for image using convolution Partitioning

Connection of Edges by Expansion

↓

Expansion

↓

Expansion

↓

Expansion
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Simple filter for image using convolution Painting (Labeling)

7.9 Painting (Labeling)

Until finding border set mark
begin function flood fill(i, j)

if flag Li,j is not marked then
set flag Li,j = D as internal
call flood fill(i+ 1 , j )
call flood fill(i , j + 1)
call flood fill(i− 1 , j )
call flood fill(i , j − 1)

end if
end function

begin main
set flag Li,j = B for boundary
select initial point (i0, j0)
flood fill(i0, j0)

end main

Recursive coding
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Simple filter for image using convolution Painting (Labeling)

Example of Painting

Original Edge detection
Connect broken edge
(Exp edge 3times) Flood fill

Widen region
(Expand region 3times)

Paint isolated
(Expand region 3times
Contract reg. 3times)

merged
(with detected Edge)

This method requires several try to tune parameters.
Unfortunately, there are no automatic methods.
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Noise Reduction using Spectrum Wiener filter

8. Noise Reduction using Spectrum
8.1 Wiener filter

Model of Observation : x(t) = x̂(t) + n(t) (1)

x(t) : Observed (known) X(f) (known) |X(f)| (known)

x̂(t) : True (Unknown) X̂(f) (Unknown) |X̂(f)| (Unknown)
n(t) : Noise (Unknown) N(f) (Unknown) |N(f)| (unknown), |N ′(f)| (known)(

|N ′(f)| : sustitute of |N(f)|,
white/red, σ2

n′ ,...

)

x(t)

log f

lo
g

|N ′(f)|
|X(f)|

︸ ︷︷ ︸
↓

x̂(t)?
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Noise Reduction using Spectrum Wiener filter

Parseval’s theorem

Parseval’s theorem
∫ ∞

−∞
|a(t)|2 dt =

∫ ∞

−∞
|A(f)|2 df (2)





A(f) =

∫ ∞

−∞
a(t)e−j2πft dt

a(t) =

∫ ∞

−∞
A(f)e+j2πft df

(3)




(Proof)

LHS =

∫

t

(∫

f
A(f)e+j2πft df ·

∫

f ′
A∗(f ′)e−j2πf ′t df ′

)
dt

=

∫

f

∫

f ′
A(f)A∗(f ′)

∫

t
e+j2π(f−f ′)t dt

︸ ︷︷ ︸
=δ(f−f ′)

df ′ df

=

∫

f

∫

f ′
A(f)A∗(f ′) δ(f − f ′) df ′ df

=

∫

f
A(f)A∗(f) df =

∫ ∞

−∞
|A(f)|2 df = RHS



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Noise Reduction using Spectrum Wiener filter

Spectral product of Non-Correlated Signals

If a(t) is independent n(t)

∫
A∗(f)N(f) df = Ca,n(0) = 0. (4)

Integral of spectral product of Non-Correlated Signals vanishes.



Proof.∫
A∗(f)N(f) df (Express A(f) and N(f) by FT)

=

∫

f

∫

t
a∗(t)e+j2πft dt

∫

t′
n(t′)e−j2πft′ dt′ df (Exchange the order)

=

∫

t

∫

t′
a∗(t)n(t′)

∫

f
e+j2πf(t−t′) df dt′ dt

(∫
e+j2πf(t−t′) df = δ(t− t′)

)

=

∫

t
a∗(t)

∫

t′
n(t′)δ(t− t′) dt′ dt =

∫

t
a∗(t)n(t) dt = Ca,n(0) = 0.



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Noise Reduction using Spectrum Wiener filter

Filtering function in Sprctral domain Φx(f)

x(t) = x̂(t) + n(t) (x, x̂, n ∈ R) (1)

X(f) = X̂(f) +N(f) (X, X̂,N ∈ C)

(5)

X̃(f) = X(f)Φx(f) (6)

x̃(t) = F−1
{
X̃(f)

}
(7)

Φx(f) ∈ R : Filtering function

X̃(f) ∈ C : Estimated spectrum
x̃(t) : Estimated spectrum

Determine x̃(t) so that the residual
is minimized.

(Integral of residual)

E =

∫
|x̃(t)− x̂(t)|2 dt (8)

From the Parseval’s theorem

E =

∫
|x̃(t)− x̂(t)|2 dt

=

∫ ∣∣∣X̃(f)− X̂(f)
∣∣∣
2

︸ ︷︷ ︸
≡I(f)≥0

df (9)

Since integrand I(f) ≥ 0,
Minimize E ⇔ Minimize I(f)

for all f .→ ∂E

∂Φx
= 0 (10)

(Stationary condition)

E =

∫ ∣∣∣X̃ − X̂
∣∣∣
2
df =

∫ ∣∣∣XΦx − X̂
∣∣∣
2
df

E is the function of the function Φx

This is called functional.
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Noise Reduction using Spectrum Wiener filter

I =
∣∣∣X̃ − X̂

∣∣∣
2
=
∣∣∣XΦx − X̂

∣∣∣
2

=
∣∣∣(X̂ +N)Φx − X̂

∣∣∣
2
=
∣∣∣X̂(Φx − 1) +NΦx

∣∣∣
2

= (X̂(Φx − 1) +NΦx)
∗(X̂(Φx − 1) +NΦx)

=
∣∣∣X̂
∣∣∣
2
(Φx − 1)2 + |N |2 Φ2

x
︸ ︷︷ ︸

≡I′

+ (X̂∗N + X̂N∗)(Φx − 1)Φx︸ ︷︷ ︸
Integral over f vanishes.(∵ Eq.(4))

E =

∫
I df =

∫
I ′ df

I ′ =
∣∣∣X̂
∣∣∣
2
(Φx − 1)2 + |N |2 Φ2

x ≥ 0

minimize E ⇔ minimize I ′ ⇔ ∂I ′

∂Φx
= 0

∂I ′

∂Φx
= 2

(∣∣∣X̂
∣∣∣
2
(Φx − 1) + |N |2Φx

)
= 0

→ Φx =
|X̂|2

|X̂|2+|N |2

Wiener filter

Φx(f) =

∣∣∣X̂(f)
∣∣∣
2

∣∣∣X̂(f)
∣∣∣
2
+ |N(f)|2

(11)

(0 ≤ Φx(f) ≤ 1)

However, this form includes FT of
true solution, X̂(f).
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Noise Reduction using Spectrum Wiener filter

Representation of filter function using observed value

(
X = X̂ +N

X̃ = XΦx

)

I =
∣∣∣X̃ − X̂

∣∣∣
2
= |XΦx − (X −N)|2

= |X(Φx − 1) +N |2

= (X(Φx − 1) +N)∗(X(Φx − 1) +N)

= |X|2 (Φx − 1)2 + |N |2

+ (X∗N +XN∗)(Φx − 1)


X∗N +XN∗

= (X̂ +N)∗N + (X̂ +N)N∗

= X̂∗N + X̂N∗ + 2 |N |2




= |X|2 (Φx − 1)2 − |N |2 + 2 |N |2Φx

+ (X̂∗N + X̂N∗)(Φx − 1)

Since
∫
A∗N df = 0 (Eq.(4))

the last term is removed from I.

E =

∫
I df =

∫
I ′ df

I ′ = |X|2 (Φx − 1)2 − |N |2 + 2 |N |2Φx

∂I ′

∂Φx
= 2

(
|X|2 (Φx − 1) + |N |2

)
= 0

→ Φx =
|X|2 − |N |2

|X|2
≃ |X|

2 − |N ′|2

|X|2

(∵ N ′ ≃ N)

(All vars. in RHS are known.)
∴

Φx(f) =
|X(f)|2 − |N ′(f)|2

|X(f)|2
(12)
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Noise Reduction using Spectrum Wiener filter

Steps to Apply Wiener filter

1 |X(f)|2
1 Measurement of x(t)

2 |X(f)|2 = |F {x(t)}|2

2 |N ′(f)|2
◮ Measurement of n(t)

(without signal)

|N ′(f)|2 = |F {n′(t)}|2
◮ If impossible,

detemine considering property of
noise.
• White : |N ′(f)| = const
• Brownian : |N ′(f)| ∝ 1

f2+a2

3 Φx(f) =
|X(f)|2−|N ′(f)|2

|X(f)|2
◮ If Φx(f) < 0, Φx(f) = 0.

(irreversible)

Wiener filter only corrects the
amplitude, it does not correct
phase.

(Φx < 0⇔ |Φx|e−iπ)

4 x̃(t)

1 X̃(f) = X(f)Φx(f)

2 x̃(t) = F−1
{
X̃(f)

}
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Noise Reduction using Spectrum Wiener filter

Example applying Wiener filter.
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|X(f)|2

1 x(t), X(f)
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Noise Reduction using Spectrum Wiener filter

Example applying Wiener filter.
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Noise Reduction using Spectrum Wiener filter

Example applying Wiener filter.
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Noise Reduction using Spectrum Wiener filter

Example applying Wiener filter.
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Noise Reduction using Spectrum Wiener filter

Effect of |N ′(f)| (White Noise)
(
x(t) = sin

(
2πt
T/4

)
+ 1

2 sin
(

2πt
T/16

)
+ n, σ2

n = 0.09
)

σ2
n = 0.09
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Noise Reduction using Spectrum Wiener filter

Effect of |N ′(f)| (Brownian Noise)
(
x(t) = sin

(
2πt
T/4

)
+ 1

2 sin
(

2πt
T/16

)
+ r, α = 0.02, σ2

n′ = 0.04 (|N ′(0)|2 = 2.7)
)

α = 0.02,

|N ′(0)|2
= 2.7
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Noise Reduction using Spectrum Wiener filter

Comparison between Wiener filter and Moving average
(
x(t) = sin

(
2πt
T/4

)
+ 1

2 sin
(

2πt
T/16

)
+ n, σ2

n = 0.09
)

Wiener filter
(σ2

n = 0.27)
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Noise Reduction using Spectrum Wiener filter

Summary of Wiener filter

In the case where x(t) and |N ′(f)| is known:

X(f) = F {x(t)}

Φx(f) =
|X(f)|2−|N ′(f)|2

|X(f)|2

X̃(f) = X(f)Φx(f)

x̃(t) = F−1
{
X̃(f)

}

Wiener filter can be taken into account of Noise spectrum.

Wiener filter is applicable when the spectrum of signal has several
peaks. This is different from the moving average.

Wiener filter is called ‘Optimal filter’.
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Noise Reduction using Spectrum Wiener deconvolution

8.2 Wiener deconvolution

Model of Observation :

y(t) = h(t) ∗ x̂(t) + n(t) (1)

(y(t), h(t) : known)

Y (f) = H(f) · X̂(f) +N(f) (2)
(
X̂ = Y−N

H

)

|N(f)| ∼ |N ′(f)| (|N ′(f)| : known)
(3)

Estimation x̃ :

X̃(f) = Ψx(f)Y (f) (Ψx ∈ C) (4)

minimize E =

∫ ∣∣∣X̃ − X̂
∣∣∣
2

︸ ︷︷ ︸
=I

df (5)

→ ∂E

∂Ψx
= 0 (6)

I =
∣∣∣X̃ − X̂

∣∣∣
2
=
∣∣ΨxY − Y−N

H

∣∣2

=
∣∣(Ψx − 1

H

)
Y + N

H

∣∣2

=
∣∣(Ψx − 1

H

)
Y
∣∣2 + |N |2

|H|2

+
(
Ψx − 1

H

)
Y N∗

H∗ +
(
Ψ∗

x − 1
H∗
)
Y ∗N

H


(
Ψx − 1

H

)
Y N∗

H∗ (Eq.(2))

=
(
Ψx − 1

H

)
(HX̂ +N)N

∗
H∗

=
(
Ψx − 1

H

)
H
H∗ X̂N∗

︸ ︷︷ ︸
Integral=0

+
(
Ψx − 1

H

)
1
H∗ |N |2




E =

∫
I(f) df =

∫
I ′(f) df

I ′ =

∣∣∣∣
(
Ψx −

1

H

)
Y

∣∣∣∣
2

− |N |
2

|H|2

+Ψx
|N |2
H∗ +Ψ∗

x

|N |2
H
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Noise Reduction using Spectrum Wiener deconvolution

Wiener deconvolution

∂E

∂Ψx
= 0 or

∂E

∂Ψ∗
x

= 0

E =

∫
I ′(f) df

I ′ =
∣∣(Ψx − 1

H

)
Y
∣∣2 − |N |2

|H|2

+Ψx
|N |2
H∗ +Ψ∗

x
|N |2
H



∂

∂Ψx

(∣∣(Ψx − 1
H

)
Y
∣∣2
)

=
∂

∂Ψx

(
(Ψ∗

x − 1
H∗ )(Ψx − 1

H ) |Y |2
)

=
(
Ψ∗

x − 1
H∗
)
|Y |2




∂I ′

∂Ψ∗
x

=
(
Ψx − 1

H

)
|Y |2 + |N |2

H = 0

→ Ψx =
1

H

|Y |2 − |N |2

|Y |2︸ ︷︷ ︸
=Φy if |N |=|N ′|.

Wiener deconvolution :

Ψx(f) =
Φy(f)

H(f)
(7)

Φy(f) =
|Y |2 − |N ′(f)|2

|Y (f)|2
(8)

X̃(f) = Ψx(f)Y (f)

=
1

H(f)
Φy(f)Y (f) (9)

Spectrum of Wiener deconvolution is
equivalent to the divided spectrum of
the spectrum applied Wiener filter to
Y (f).
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Noise Reduction using Spectrum Wiener deconvolution

In the ideal case of N ′(f) = N(f)

(N ′ = N)

Ψx = 1
HΦy

= 1
H

|Y |2−|N |2
|Y |2 = 1

H
|Ŷ |2

|Ŷ |2+|N |2

=
H∗|X̂|2

|H|2|X̂|2+|N |2
(10)

H 6= 0 and N = 0:

Ψx = 1
H → X̃ = Y

H = X̂

(Ideal case)

H = 0 and N 6= 0:

Ψx = 0 → X̃ = 0

(Cannot restore)

H = 0 and N = 0:

lim
H→0

{
lim
N→0

∣∣∣∣
H∗|X̂|2

|H|2|X̂|2+|N |2

∣∣∣∣
}

= lim
H→0

{∣∣∣∣
1

H

∣∣∣∣
}

=∞

lim
N→0

{
lim
H→0

∣∣∣∣
H∗|X̂|2

|H|2|X̂|2+|N |2

∣∣∣∣
}

= 0

Estimation is impossible.
(It takes different values, if the path to
take limitation is different.)

If H = 0, X̃ cannot be detemined.

→
(
Consider as X̃(f) = 0
to obtain x̃(t).

)
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Noise Reduction using Spectrum Wiener deconvolution

Example of Wiener deconvolution (Input : σh = 5, σn = 5)

x̂(r) h(r) = 1
2πσ2

h

e
− r2

2σ2
h n(r) y(r) = h∗ x̂+n

[0, 255] [0, 1/(2πσ2
h)] [−64, 64] [0, 255]

X̂(k) H(k)= e−
σ2
h
k2

2 |N(k)| Y (k)= H X̂ +N

log [1,104] [0, 1] log [1,104] log [1,104]
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Noise Reduction using Spectrum Wiener deconvolution

Example of Wiener deconvolution (Result (failed case))

(|N ′(f)| = σ′
n = 5)

Φy(k)

[0, 1]

Ψx(k)

log [1, 10105]

X̃(k)

log [1, 10105]

x̃(r)

[0, 10105]

Since |Ψx(k)| includes very large spectrum, X̃(k) diverges, and x̃(r) di-
verges.
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Noise Reduction using Spectrum Wiener deconvolution

Reason of large filter gain.

H = 0 and N ′ 6= N

Ψx = lim
H→0

1
HΦy

= lim
H→0

1
H

Pos{|Y |2−|N ′|2}
|Y |2

= lim
H→0

1
H

Pos
{
|HX̂+N|2−|N ′|2

}

|HX̂+N|2

= lim
H→0

1
H

Pos{|N |2−|N ′|2}
|N |2

Pos {F} ≡ max{F, 0}

|Ψx| =
{
∞ (|N | > |N ′|)
0 (|N | ≤ |N ′|)

→ Not continuous

Prob. dens. of N(f)
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Noise Reduction using Spectrum Wiener deconvolution

Methods to supress divergence of filter gain.

Specify large |N ′|

Ψ′
x =

1

H

Pos
{
|Y |2 − α|N ′|2

}

|Y |2
(α > 1)

Limitation of domain
Ψ′

x(k) = Θ {|k| ≤ kmax }Ψx(k)(
Θ {C} ≡

{
1 (C is true)
0 (C is false)

)

Limitation of range
Ψ′

x = Θ {|Ψ(k)| ≤ Ψmax }Ψx(k)

Limitation of |H|
Ψ′

x = Θ {|H| > Hmin}Ψx

Inspection of neighbores

Ψ′
x(k) = Θ

{
M0(k)
Ma(k)

> r0min

}
Ψx(k)

◮ Ma(k) is the number of pixels negiboring
k.

◮ M0(k) is the number of pixels with
Φy(k

′) = 0 within the pixels negiboring k.
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Noise Reduction using Spectrum Wiener deconvolution

Suppression of divergence in Wiener Deconvlution (e.g.)

Before Deconv. True kmax = 0.15 : Divergent kmax = 0.10 : Periodic Pattern

α = 4 : Blurring Ψmax = 10 : Noisy Ψmax = 5 : Noisy

Insp. Neigh. : Ringing Hmin = 0.01 : Peri. Patt. Hmin = 0.1 : Peri. Patt., Ring.
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Noise Reduction using Spectrum Wiener deconvolution

Reason of errors in Wiener deconvolution

Divergent
Insufficient reduction of filter
gain for small H.

Blurring
Over filtering of high freq. com-
ponent.

Periodic Pattern
Insufficient filtering for a certain
component.

Noisy
Insufficient filtering of high freq.
component.

Ringing
Ghost appeares along edges.
Caused by Fourier transform wiht fi-
nite terms’ trancation.
⇔ Gibbs phenomenon

(Impossible to avoid ringing.)

θ

f1(θ)
f3(θ)
f5(θ)
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Noise Reduction using Spectrum Estimation of Response function H(f)

8.3 Estimation of Response function H(f)

Y (f) = H(f) · X̂(f) +N(f)

X̃(f) =
1

H(f)
Φy(f)Y (f)

H(f) : Function is known, but
parameter of the function
is unknown.

e.g.: H(f) = e
− f2

2σ2
f

(σf is unknown)




Determine the parameter by least
square fitting, and compute
H̃(f)

The data for the least square
fitting is flatten data by noise
probability density function in the
domain where the noise is
dominant.

X̃ ′(f) =
1

H̃(f)
Φy(f)Y (f)
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Noise Reduction using Spectrum Estimation of Response function H(f)

Least square fitting to Gaussian function

Fitting function (Estimated
Value)

f̃(xi; a, b) = ae−bx2
i

Observed value
(xi, fi) i ∈ {1, · · · , N}

Residual ∆fi = fi − f̃(xi)

Average of Square Residual
E = (∆f)2

minimize E

In general method, the normal
equations become non-linear
equations.

→Complex

Mapping from f to F = log f .

F̃i(xi; a, b) = log a− bx2i
◮ quadratic equation
◮ Expacted error for f and that for

F are different.
→ It should be consider the
weight.

E = f2(∆ log f)2
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Noise Reduction using Spectrum Weighted least square method

Weighted least square method

Weight ≡ reliability of data

E = wi

(
fi − f̃i

)2

Low reliability of the data with the large scatter-
ing.

E

[(
fi − f̃i

)2]
∼ E

[(
fi − f̂i

)2]
= σ2

fi

→ 1

σ2
fi

E

[(
fi − f̃i

)2]
∼ 1(constant)

→ Independent of i → ∴ wi =
1

σ2
fi

E =
1

σ2
fi

(
fi − f̃i

)2
(1)

Without weight
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Noise Reduction using Spectrum Weighted least square method

Mapping of variable in least square method

E =
1

σ2
fi

(
fi − f̃i

)2
(2)

In the case of Fi = F (fi),

fi − f̃i = ∆fi = ∆Fi
∆fi
∆Fi

≃ (Fi − F̃i)
df

dF

∣∣∣∣
i

E =
1

(
dF
df

)2
i
σ2
fi

(
Fi − F̃i

)2
(3)

∣∣∣∣
dF

df

∣∣∣∣ shows a magnification factor of er-

ror bar.

If F = log f ,

dF

df
=

1

f

E =
f2
i

σ2
fi

(log fi − log f̃i)2

f = f̂ + n
n: white → σ2

n = const.

E =
1

σ2
n

f2
i (log fi − log f̃i)2

Larger f has larger weight.
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Computed Tomography (CT) Absorption of X-ray

9. Computed Tomography (CT)
9.1 Absorption of X-ray

X-ray radiography
Object

Incident Transmitted

II0

d

κ

I(y) = I0e
−κ(y)d

κ : attenuation coefficient
In the case of X-ray,

it depends on the atomic
number.

(Heavy atom→ large κ.)

If κ is depth dependent,

κd→
∫ d

0
κ(x, y) dx

→
∫ ∞

−∞
κ(x, y) dx

(κ(x, y) = 0 Not Object)

Only the integral of κ along
optical path can be obtained
from X-ray radiography.
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Computed Tomography (CT) Projection from several directions

9.2 Projection from several directions

I0

I0

I(ξ, θ = π
2
)

I(ξ, θ = 0)

ξ

ξ

The distribution of κ including depth
distribution, which is called tomog-
raphy, can be obtained from several
projected data with different direc-
tions.

⇓
Computed Tomography
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Computed Tomography (CT) Projection from several directions

Number of projections and Num. of internal nodes

3 projs.
(observed)

3 projs.
(observed)

3x3 unknowns

Num. of unknowns > Num. of Obs.
→ Cannot solve.

Num. of unknowns = Num. of Obs.
→ Cannot distinguish.

To obtain more projection, other projections with different directions are
needed.

θ ∈ [0, π]

151 / 197



Computed Tomography (CT) Schematic of forward and backward-projection

9.3 Schematic of forward and backward-projection
Forward projection (measuring process)

Forward projection
≡Integral along beam path

p(ξ, θ) =
∫
η κ(x, y) dηθ

(x ≡ x(ξ, θ), y ≡ y(ξ, θ))
→ Accumulate along path

0
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Computed Tomography (CT) Schematic of forward and backward-projection

Backward projection (1) Simple backprojection

1 Map averaged value of the
projection data along path for
each angle.

=⇒
2 Take an average of mapped

data for each pixel.

8

8

8

8

33

8

8

8

8 ⇐=
Blurrier than original.


Original

0

0

0

0
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0



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Computed Tomography (CT) Schematic of forward and backward-projection

Backward projection (2) Filtered backward projection

In the simple backward projection, the reconstracted result is blurred. To
reduce the blurring, edge enhancement filter is applied to the projection
data.

Edge enhancement filter

gn = fn − kf ′′
n

= fn − k(fn−1 − 2fn + fn+1)

= −kfn−1 + (2k + 1)fn − kfn+1

(k = 1)

gn =
+1∑

i=−1

wifn−i

(w−1, w0, w+1) = (−1,+3,−1)

154 / 197



Computed Tomography (CT) Schematic of forward and backward-projection

Filtered backward projection

1 Edge enhancement of
projection data: p′

(e.g.) p′j =
+1∑

i=−1

wipj−i

(w−1, w0, w+1) = (−1, 3,−1)
p 0 100 0

p′ -100 300 -100

2 Apply simple backward
projection using p′.

0

0

0

0

100

0

0

0

0 ⇐=
In this example, the reconstructed
field is identical to original.

0 deg 45 deg
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Computed Tomography (CT) Radon Transform

9.4 Radon Transform
Coordinate system

I(ξ, θ)

I0(ξ, θ)

x

y

ξ

ξ
r

η

θ

Expression of point r

r = x ex + y ey

= ξ eξ + η eη




Inner product of ex :
x ex · ex + y ex · ey

= ξ ex · eξ + η ex · eη

x = ξ cos θ − η sin θ

replacemen

x

y

ξ

η

θ




{
x = +ξ cos θ − η sin θ
y = +ξ sin θ + η cos θ

{
ξ = +x cos θ + y sin θ
η = −x sin θ + y cos θ
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Computed Tomography (CT) Radon Transform

Radon Transform

Projected data (known)

I(ξ, θ) = I0 e
−

∫
L
κ(r) dl

L ∈ {r(ξ, η; θ) | ξ = ξ′(const.)}

Sinogram (known)

p(ξ, θ) ≡ − log
I(ξ, θ)

I0

Radon Transform
Integral over straight line in
2-D space.

p(ξ, θ) =

∫

L
κ(r(ξ, θ)) dl

Extend from line in-
tegral to 2-D area
integral
ξ′ = x cos θ + y sin θ

x

y

ξ

ξ′

dl(ξ = ξ′)
η

∫

L
[· · · ] dl =

∫

ξ=ξ′
[· · · ] dη

=

∫ ∞

−∞

∫ ∞

−∞
[· · · ]δ(ξ − ξ′) dξ′ dη

=

∫ ∞

−∞

∫ ∞

−∞
[· · · ]δ(ξ − ξ′(x, y)) dx dy

=

∫ ∫
[· · · ]δ(ξ − (x cos θ + y sin θ)) dx dy
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Computed Tomography (CT) Projection slice theorem

9.5 Projection slice theorem

Projection (Sinogram)

p(ξ, θ) =

∫ ∫
κ(x, y)δ(ξ − (x cos θ + y sin θ)) dx dy (1)

FT with respect to ξ

P (kξ, θ) =

∫ ∫ ∫
κ(x, y)δ(ξ − (x cos θ + y sin θ))e−jkξξ dx dy dξ

=

∫ ∫
κ(x, y)e−jkξ(x cos θ+y sin θ) dx dy (2)
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Computed Tomography (CT) Projection slice theorem

2-D Fourier Transform in polar coordinate system

Forward transform

F (kx, ky) =

∫ ∫
f(x, y)e−j(kxx+kyy) dx dy (kx = k cos θ, ky = k sin θ)

=

∫ ∫
f(x, y)e−jk(x cos θ+y sin θ) dx dy ≡ F ′(k, θ) (3)

Inverse transform

f(x, y) =
1

4π2

∫ ∫
F (kx, ky)e

+j(kxx+kyy) dkx dky (
∫∫

dkx dky =
∫∞
0

∫ 2π
0 k dθ dk)

=
1

4π2

∫ ∞

0

∫ 2π

0
F ′(k, θ)e+jk(x cos θ+y sin θ) k dθ dk (4)
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Computed Tomography (CT) Projection slice theorem

Eq. (2) and Eq. (3) are same.

Projection Slice Theorem

P (kξ , θ) is expressed by Fourier transform of κ(x, y) in polar
coordinate system.

Since P (kξ , θ) is known, κ(x, y) is obtained by the inverse FT using (4).

κ(x, y) =
1

4π2

∫ ∞

0

∫ 2π

0
P (kξ , θ)e

+jkξ(x cos θ+y sin θ) kξ dθ dkξ (5)
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Computed Tomography (CT) Projection slice theorem

Projection from opposite direction

κ(x, y) =
1

4π2

∫ ∞

0

∫ 2π

0
P (kξ , θ)e

+jkξ(x cos θ+y sin θ) kξ dθ dkξ

=
1

4π2

∫ ∞

−∞

∫ π

0
P (kξ , θ)e

+jkξ(x cos θ+y sin θ) |kξ| dθ dkξ




∫ ∞

0

∫ 2π

0
kξ dθ dkξ =

∫ ∞

0

∫ π

0
kξ dθ dkξ +

∫ ∞

0

∫ 2π

π
kξ dθ dkξ

Projection from opposite direction
(

θ → θ ± π
ξ → −ξ

) 


p(ξ, θ ± π) = p(−ξ, θ)
P (kξ, θ ± π) = P (−kξ , θ)
e+jkξ(x cos(θ±π)+y sin(θ±π)) = e−jkξ(x cos θ+y sin θ)




2nd Term =

∫ ∞

0

∫ 2π

π
P (kξ, θ)e

+jkξ(x cos θ+y sin θ)kξ dθ dkξ
(
θ′ = θ − π

)

=

∫ ∞

0

∫ π

0
P (−kξ, θ′)e−jkξ(x cos θ′+y sin θ′)kξ dθ

′ dkξ
(
k′ξ = −kξ

)

=

∫ −∞

0

∫ π

0
P (k′ξ, θ

′)e+jk′
ξ
(x cos θ′+y sin θ′)(−k′ξ) dθ′ (−dk′ξ)

=

∫ 0

−∞

∫ π

0
P (k′ξ , θ

′)e+jk′
ξ
(x cos θ′+y sin θ′)|k′ξ| dθ′ dk′ξ



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Computed Tomography (CT) Reconstruction by using Fourier transform

9.6 Reconstruction by using Fourier transform

κ(x, y) =
1

4π2

∫ ∞

−∞

∫ π

0
P (kξ , θ)e

+jkξ

ξ︷ ︸︸ ︷
(x cos θ + y sin θ) |kξ| dθ dkξ

=
1

2π

∫ π

0

1

2π

∫ ∞

−∞
[P (kξ, θ)|kξ |] e+jkξξ dkξ

︸ ︷︷ ︸
=F−1

kξ
{P ((kξ ,θ)|kξ|}≡q(ξ,θ)

dθ =
1

2

1

π

∫ π

0
q(ξ(x, y), θ) dθ

︸ ︷︷ ︸
Average with θ.

q(ξ(x, y), θ) =

∫ ∞

−∞
[P (kξ, θ)|kξ|] e+jkξ(x cos θ+y sin θ) dkξ

κ(x, y) =
1

2

〈
F−1
kξ

{
Fξ {p(ξ, θ)}ξ H(kξ)

}
kξ

〉

θ

(H(kξ) = |kξ| in the case of Ramp function)
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Computed Tomography (CT) Reconstruction by using Fourier transform

1 Sinogram :
p(ξ, θ)

2 FWD FT with ξ :

P (kξ, θ) =

∫ ∞

−∞
p(ξ, θ)e−jkξξ dξ

3 Filtering (Weight with |kξ|) :
|kξ|P (kξ , θ)

4 INV FT with kξ :

q(ξ, θ) =
1

2π

∫ ∞

−∞
P (kξ, θ)|kξ|e+jkξξ dkξ

5 Backward projection (Coordinate transform and integrate with θ) :

κ(x, y) =
1

2π

∫ π

0
q(x cos θ + y sin θ, θ) dθ

Two FT (FWD and INV) are needed for a certain θ.
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Computed Tomography (CT) Reconstruction by using Fourier transform

Filtered Back-Projection

Before IFT, |kξ| is multiplied.

Since this factor |kξ| is considered as
a filter in the spectral domain, the
method based on FT is called

Filtered Back-projection (FBP).

In the actual computation,
kξ ∈ [−∞,∞] → [−kmax,+kmax].

kmax is Nyquist frequency
determined by sampling interval.

To avoid ringing artifact caused by
high frequency component, another
filter can be applied.
(e.g. Shepp-Logan filter)

H(kξ) =
2kmax

π
sin

∣∣∣∣
πkξ
2kmax

∣∣∣∣

Ramp filter

Shepp-Logan filter

kmax

0
0

−kmax +kmax
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Computed Tomography (CT) Reconstruction by using Fourier transform

Handling of discrete data

p(ξn, θm) = p(n∆ξ,m∆θ)
(n,m) : Integer

κ(xi, yj) = κ(i∆x, j∆y) (i, j) : Integer

In order to evaluate
q(x cos θ + y sin θ, θ) from q(ξ, θ)
interpolation are needed.

e.g. (Interpolation for ξ)
replacemen

ξ
ξn ξn+1

q(ξn, θ)
q(ξn+1, θ)

q(x cos θ + y sin θ, θ)

x cos θ + y sin θ
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Computed Tomography (CT) Reconstruction by using Fourier transform

Reconstruction using convolution
{

c(x) =
∫
a(x′)b(x− x′) dx′

C(k) = A(k)B(k)

}
⇔ c(x) =

1

2π

∫
A(k)B(k)e+jkx dk

q(ξ, θ) =
1

2π

∫ kmax

−kmax

P (kξ, θ)H(kξ)e
+jkξξ dkξ =

∫ ξmax

−ξmax

p(ξ′, θ)h(ξ − ξ′) dξ′

If H(kξ) = |kξ|,

h(ξ) =
1

2π

∫ kmax

−kmax

|kξ|e+jkξξ dkξ

=





1

2π
k2max (ξ = 0)

1

π

kmax

ξ
sin(kmaxξ) +

1

ξ2
(cos(kmaxξ)− 1) (ξ 6= 0)

−5 0 5

h(ξ)

ξ/∆ξ

Subtract by neighbors ⇔ Edge Enhancement
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Computed Tomography (CT) Reconstruction by using Fourier transform

1 Sinogram : p(ξ, θ)

2 Convolution :

q(ξ, θ) =

∫
p(ξ′, θ)h(ξ − ξ′) dξ′

3 Back-projection :

κ(x, y) =
1

2π

∫ π

0
q(x cos θ + y sin θ, θ) dθ

Only one convolution for each θ.
No FT.

Number of multiplifications for each θ

Fourier
transform

DFT× 2 2N2

FFT× 2 2N logN

Convolutinal
integral

All points N2

Neighboring M pts. (M ≪ N) MN

→ Faster computation than DFT, if the convolution
is applied to neighboring points only.

κ(x, y)

p′(x, y; 0) q′(x, y; 0)

(
p′, q′ : contrast is enhanced to display
(erf(I/σ))

)
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Computed Tomography (CT) Reconstruction by using Fourier transform

Filtered Back-projection and Simple BP

Filtered Back-Projection

κ(x, y) =
1

2

〈
F−1
kξ

{
Fξ {p(ξ, θ)}ξ H(kξ)

}
kξ

〉

θ

Simple Back-projection

H(k) = 1

κ(x, y) =
1

2

〈
F−1
kξ

{
Fξ {p(ξ, θ)}ξ

}
kξ

〉

θ

=
1

2
〈p(ξ, θ)〉θ

=
1

2π

∫ π

0
p(ξ, θ) dθ

◮ No need to FT→ Fast
◮ The reconstructed distribution is blurred.

→ Iterate two procedures of projection and back-projection.
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9.7 Iterative Reconstruction

Applying the forward projection (FP)
to the reconstructed field obtained by
the backward projection (BP), we can
evaluate the error.
The BP of the error is added to the
field obtained in the previous step.
The simple BP is used for the BP al-
gorithm, since the simple BP is fast.

κ(x, y) p(ξ, θ)

κTrue pObs

κ1

p1

∆p1

∆κ1

κ2

F

B

(1)

(2)

(3)

(4)
(5)

(1) BP for the proj. : κ1 = B
{
pObs

}

(2) FP for the field : p1 = F {κ1}
(3) Under-estimation : ∆p1 = pObs − p1

(4) BP for the under-est. : ∆κ1 = B {∆p1}
(5) Update the field : κ2 = κ1 + α∆κ1

(α : Relaxation factor for
stable reconstruction

0 < α ≤ 1

)
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Computed Tomography (CT) Iterative Reconstruction

Simple Back-projection

Sinogram

p(ξn, θm) =

∫

Lnm

κ(x, y) dl ≃ κ(x, y ∈ Lnm)∆lnm

→ κ(x, y ∈ Lnm) =
p(ξn, θm)

∆lnm

(
∆lnm =

∫

Lnm

dl

)

Fraction of projection is mapped onto the internal distribution.

κ(xi, yj) =
1

Nn

∑

m

∑

n

ai,j,n,m
p(ξn, θm)

∆lnm

ai,j,n,m : Overlap area fraction between the pixel (xi, yj)
and the beam Lnm with width ∆ξ.
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Computed Tomography (CT) Example of reconstruction by simulation

9.8 Example of reconstruction by simulation

True κ(x, y)

Sinogram p(ξ, θ)

κ(x, y) ∈ [0, 2],
Nx = Ny = 100,
Nξ = 100,
Nθ = 45(∆θ = 4deg)

Filtered Back-Projection (Filter : Ramp function)
κ(x, y) [0,2] ∆κ(x, y) [-0.2,+0.2]

||∆κ||2 ≡
√
〈∆κ2〉 = 0.15

Line artifact
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Computed Tomography (CT) Example of reconstruction by simulation

True κ(x, y)

Sinogram p(ξ, θ)

κ(x, y) ∈ [0, 2],
Nx = Ny = 100,
Nξ = 100,
Nθ = 45(∆θ = 4deg)

Iterative reconstruction
N = 1

||∆κ||2 = 0.42

N = 2

||∆κ||2 = 0.25

N = 10

||∆κ||2 = 0.17

N = 20

||∆κ||2 = 0.11
Reduction of edge blurring
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Magnetic Resonance Imaging (MRI)

10. Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) :
Measurement spatial distribution of specific atom using NMR.
In medical application, the density of 1H is measured.

MRI→ ρH(x, y, z)

NMR (Nuclear Magnetic Resonance) spectrometry:
Analysis of properties of atoms or the molecules in a sample

using NMR

NMR→ s(|B|)
Magnetic dipole moment m

m = µ0IA = γ~J (1)



γ :Gyromagnetic ratio; dependent on atom
~ :Planck constant

J :Angular momentum Ĵ2 = J(J + 1), Ĵz = J
J :Spin quantum number (J = 1

2 for 1H)




m

A

I
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Magnetic Resonance Imaging (MRI) Macroscopic Magnetic Dipole Moment

10.1 Macroscopic Magnetic Dipole Moment

-
+ + + + +

- -

B = 0

B 6= 0

m = 0

m 6= 0

B = 0 B 6= 0

E0

E+1/2

E−1/2

B = 0
◮ Direction of individual

magnetic moment m(i) is
random.

◮ M = m = 0

B = B0ez 6= 0
◮ m(t) follows gyro motion.
◮ m(t)t is quantized by

anomalous Zeeman effect.

E± 1

2

= E0 ∓
1

2
~γ|B|

◮ Boltzmann distribution

n− 1

2

= n+ 1

2

e
−∆E

kT

→ n+ 1

2

> n− 1

2

(∆n/n ∼ 5ppm)

◮ M = m = |m|ez 6= 0
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Magnetic Resonance Imaging (MRI) Precession of Magnetic Dipole

10.2 Precession of Magnetic Dipole

Motion of equation of magnetic dipole(
Derived from motion of equation due to Lorentz force (dvdt ∝ v ×B, v ∝ e⊥ ×m)

)

dm

dt
= γm×B (2)

Case of B = B0ez (|B0| = const)

From ez·(Eq.(2))

ez ·
dm

dt
= 0

mz = const (3)

From m·(Eq.(2))

m·dm
dt

=
1

2

dm ·m
dt

= 0

m ⊥ dm

dt
(4)

|m|2 = const (5)

(Independent of |B|)

From
d(Eq.(2))

dt

d2m

dt2
= γ

dm

dt
×B

=(γB0)
2(m× ez)× ez

=(γB0)
2(−m+mzez)

(6)
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Magnetic Resonance Imaging (MRI) Precession of Magnetic Dipole

From ex·(Eq.(6)) and ey·(Eq.(6))

d2mn

dt2
+ (γB0)

2mn = 0 (n ∈ {x, y})

mn = Cn cosω0t+ Sn sinω0t (7)

ω0 = γB0 (8)

ω0 : Larmor frequency

ex·(Eq.(2)) :
(
dmx

dt = γB0my

)

Substitute Eq.(7)

ω0(−Cx sinω0t+ Sx cosω0t)

= γB0︸︷︷︸
=ω0

(Cy cosω0t+ Sy sinω0t)

→− Cx = Sy, Sx = Cy

Assume m = (m⊥, 0) at t = 0, mx.
From Eq.(7) at t = 0 ,

Cx = −Sy = m⊥
Cy = Sx = 0

∴

mx = +m⊥ cosω0t (9)

my = −m⊥ sinω0t (10)

m2 = m2
⊥ +m2

z = const

∴

mz = ±
√
m2 −m2

⊥ (11)
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Magnetic Resonance Imaging (MRI) Precession of Magnetic Dipole

Precession

dm

dt
= γm× (B0ez)





mx = +m⊥ cosω0t
my = −m⊥ sinω0t

mz = ±
√

m2 −m2
⊥
(12)

m

m

xx

yy

zz

◮ Circular motion around z-axis
with clockwise direction

Representation on Rotational
coordinate

replacemen

x

y

X

Y

ω0t

{
eX(t) = cos(ω0t)ex − sin(ω0t)ey

eY (t) = sin(ω0t)ex + cos(ω0t)ey
(13)

m(t) = m⊥eX(t) +mzez
(14)
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Magnetic Resonance Imaging (MRI) Nuclear Magnetic Resonance(NMR)

10.3 Nuclear Magnetic Resonance(NMR)

Add a rotational magnetic field (ω = ω0)
with small amplitude,

B(t) = B0 +B1(t) (15)

B0 = B0ez

B1(t) = B1Y eY (t) (16)
(
|B1(t)| ≪ |B0|
B1Y = const, B1X = 0

)
X X

Y Y

z

m0

B0

B1

Definition of m.

m(t) =mX(t)eX(t) +mY (t)eY (t) +mz(t)ez (17)

(m(0) = m⊥eX +m0zez)
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Magnetic Resonance Imaging (MRI) Nuclear Magnetic Resonance(NMR)

Time derivatives of unit vectors

deX

dt
= −ω0eY ,

deY

dt
= +ω0eX

(18)

Motion equation

dm

dt
= γm×B

◮ l.h.s

dm

dt
=




ω0mY

−ω0mX

0


+




dmX
dt

dmY

dt

dmz

dt




◮ r.h.s

γm×B =

∣∣∣∣∣∣∣

mX mY mz

0 B1Y B0

eX eY ez

∣∣∣∣∣∣∣

= γ




mYB0

−mXB0

0


+ γ



−mzB1Y

0

+mXB1Y




∴ 


dmX
dt

dmY
dt

dmz

dt


 =



−γB1Y mz

0
+γB1Y mX




Y component : mY (t) = 0
(∵ mY (0) = 0)

X,z component : ?
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


Case of B = B0ez




dmx

dt

dmy

dt

dmz

dt


 =




+γB0my

−γB0mx

0




◮ Clockwise rotation around z
axis.

◮ frequency: ω0 = γB0

In the case of
B = B0ez +B1Y eY




dmX

dt

dmY

dt

dmz

dt


 =



−γB1Y mz

0
+γB1YmX




◮ Clockwise rotation around Y
axis.

◮ frequency:ω1Y = γB1Y




In the case of B = B0ez +B1Y eY

While m rotates around z axis caused by B0,
m always feels B1Y .
As the result, m also rotates around Y axis.
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Phase difference between m and B1

When B0 is supplied, the precession
is appeared. However, all the dipoles
do not have same phase.
→ eX of each particle is different.

e
(i)
X 6= e

(i′)
X , m(i) ·B1 6= 0

Case of B
(i)
1X 6= 0

B1(t) = B
(i)
1Xe

(i)
X (t) +B

(i)
1Y e

(i)
Y (t)

◮ torque owing to B
(i)
1X :

m(i) ×B
(i)
1Xe

(i)
X

= m(i)
z B

(i)
1Xe

(i)
Y −m

(i)
Y B

(i)
1Xez

→ dm
(i)
Y

dt
= γm(i)

z B
(i)
1X 6= 0

◮ m(i) rotates so as it becomes
perpendicular to B1.
(|m| = const)

◮ When B = B0, directions of X axis for
individual particles are different.

m(i) = mX
(i)e

(i)
X +m

(i)
z ez

But average has only z component.
M = m = mzez

◮ When B = B0 +B1, X axis for all
particles points to the direction which is
perpendicular to B1.

m(i′) = mX
(i)eX +m

(i)
z ez Average

has X-z component.
M ′ = m′ = mXeX +mzez

B1 = 0

B1 6= 0
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Excitation and Radiation

Excitation
Iradiate B1 to the state of B = B0

↓
Direction of M varies by absorption
of energy of B1.

Emission
Stop excitation

↓
While returning back to the original
state, Energy of m is radiated as B1. Observed

B0

B1

B1
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10.4 Relaxation time

After excitation field，return back to Boltzmann distribution caused
by interaction with neighboring.
Electromagnetic wave is radiated during this process.

Relaxation model
◮ Longitudinal (Spin-lattice)

relaxation

dMz

dt
= −Mz −M0

T1

Mz(t) = M0(1− e−
t

T1 ) +Mz(0)e
− t

T1

◮ Transverse (Spin-spin)
relaxation

dM⊥

dt
= −M⊥

T2

M⊥(t) = M⊥(0)e
− t

T2

◮ T1, T2 depends on both nuclear
species and bonding to others

X

X

Y

z

t

t

m

m

M⊥

M z
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10.5 Principle of reconstruction
(1) Selection of excited slice

Add gradient of magnetic field Gz ≡ ez · ∇(B · ez)

Bz(z) = (B0 +Gz(z − z0))ez

ω(z) = ω0 + γGz(z − z0)

The frequency of precession
depends on z.

Excitation by the rotational
magnetic field B1(t) ∝ cos(ω0t)

↓
Only the dipoles at z = z0 are
excited.
Others are not Excited.

z

|Bz|

|B0|

B0

B0 −Gzz

B0 +Gzz

Resonance with B1ω0t
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(2) Identification of line integrals of radiated field

Add gradient of magnetic field on (x, y) plane, after stop irradiation of
excited wave. Gξ ≡ eξ · ∇(Bz · ez)
Bz(ξ) = (B0 +Gξξ)ez , (eξ = cos θex + sin θey)

The frequency of radiated wave depends on ξ.
ω′
0(ξ) = γ(B0 +Gξξ) = ω0 + γGξξ

Observed signal :
Proportional to density of excited atom, ρ.

s(t, θ) =
∫∫

ρ(x, y)ejω
′
0(ξ(x,y))t dx dy

↓ F t (shown in the next slide)

S(ω, θ) =
∫∞
−∞ ρ(ξ(ω), θ) dη

≡projection
(
ξ(ω) = ω−ω0

γGξ

)
x

y

|Bz| |B0|

θ

ξ

η

ω′0(ξ)

= ω0+ γGξξ

Change the direction of gradient
Projection data from whole direction can be obtained.
→ Same to the CT reconstruction.
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Calculation of Fourier Transform of s(t, θ)

ξ ≡ξ(x, y; θ), η ≡ η(x, y; θ)

ω′
0(ξ) = ω0 + γGξξ ≡ ω′

0(x, y, θ)

s(t, θ) =
∫

y

∫

x
ρ(x, y)ejω

′
0t dx dy =

∫

η

∫

ξ
ρ(ξ, η)ejω

′
0t dξ dη

S(ω, θ) =
∫
s(t, θ)e−jωt dt =

∫

t

∫

η

∫

ξ
ρ(ξ, η)ej(ω0+γGξξ−ω) t dξ dη dt

=
∫

η

∫

ξ
ρ(ξ, η)

∫

t
ej(ω0+γGξξ−ω) t dt dξ dη

=
∫

η

∫

ξ
ρ(ξ, η)δ(ω0 + γGξξ − ω) dξ dη

=
∫

Lη

ρ(ξ, η) dη
(
Lη ∈

{
r(ξ, η; θ)

∣∣∣ ξ =
ω − ω0

γGξ

})

S(ω, θ) =

∫ ∞

−∞
ρ(ξ(ω), θ) dη, ξ(ω) =

ω − ω0

γGξ
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PET, SPECT

11. PET, SPECT

PET and SPECT can determine γ-ray source distribution to monitor level
of biological activity.
e.g. Giving the drug which can emit γ-ray to blood vessel, we can observe
amounts of blood flow.

PET : Positron Emission Tomography
The drug is source of positrons.
The γ-rays are emitted by an annihilation of electron pair.

SPECT : Single Photon Emission Computed Tomography
The drug is source of γ-rays.
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PET, SPECT PET

11.1 PET(Positron Emission Tomography)

Annihilation of electron pair

collision

e−

e+

γ

γ

e− + e+ → 2γ(511keV), mec
2 = 511keV

When an electron and a positron collide, two gamma-rays with 511 keV
are emitted to opposite directions on a single line.
The direction of the line is random.
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PET, SPECT PET

Projection data

x

y

ξ
θ

γ

γ

When annihilation occurs, two sensors
located on the line passing the
annihilation point detect an event at
same time.

The angle of the line corresponds to the
projection angle θ in CT.

The distance of the line from origin
corresponds to the position of detector
ξ in CT.

Accumulating other events, we can
obtain the statistical distribution
p(ξ, θ).

The procedure to compute internal field f(x, y) is same to CT.
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PET, SPECT SPCET

11.2 SPCET(Single Photon Emission Computed Tomography)

Collimator

detector
(rotatable)

x

y

η

ξ

θ

γ

When the array detector is aligned to
perpendicular to the direction of θ, only
the γ-ray with the angle θ can be
detected by the detector located at ξ,
since the others are shielded by the
collimator.

The projection of p(ξ, θ) corresponds to
the accumulated events.

The procedure to compute internal field f(x, y) is same to CT.
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12. Ultrasonic Echo
12.1 Mechanism of echo

Reflection at interface

Interface

Ref.

Inc. Trans.

Z1,k1 Z2,k2

medium I medium II

Zi: Impedance
ki: Wave number

The reflection occurs at the interface with impedance change.
(Proof is shown later.)
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Ultrasonic Echo Mechanism of echo

Reflection model for the electromagnetic wave

Z1,k1 Z2,k2−→
E 1,
−→
H1

−→
E 2,
−→
H2

←−
E 1,
←−
H1

x

y z
z = 0

(Arrows over symbols represent propagating direc-
tions.)

Poynting vector:

−→si =
−→
Ei ×

−→
Hi =

−→siez (1)

←−si =
←−
Ei ×

←−
Hi =

←−si (−ez) (2)

Definition of EM-wave:
(Definition to satisfy Eq. (1) and (2))





−→
Ei = +

−→
Eie

−jkizex−→
Hi = +

−→
Hie

−jkizey←−
Ei = +

←−
Eie

+jkizex←−
Hi = −

←−
Hie

+jkizey

(3)

Definition of impedance:

Zi =

−→
Ei
−→
Hi

=

←−
Ei
←−
Hi

(4)
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Ultrasonic Echo Mechanism of echo

Field in each medium{
E1=

−→
E1 +

←−
E1, E2 =

−→
E2,

H1=
−→
H1 +

←−
H1, H2=

−→
H2

(5)

Boundary condition:
(Continuity of tangential
components)
At z = 0{

E1 · ex = E2 · ex
H1 · ey = H2 · ey

(6)

⇔
{ −→

E1 +
←−
E1 =

−→
E2−→

H1 −
←−
H1 =

−→
H2

(7)

From Eq. (4) and Eq. (7)

Reflection wave

←−
E1 =

Z2 − Z1

Z2 + Z1︸ ︷︷ ︸
≡R

−→
E1 (8)

Transmission wave

−→
E2 =

2Z2

Z2 + Z1

−→
E1 (9)

In the case Z2 6= Z1:

R =
Z2 − Z1

Z2 + Z1
6= 0.

⇒ Reflection occurs at the
interface.
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Ultrasonic Echo Impedance

12.2 Impedance

Electro-Magnetic wave Z =
E [V/m]

H [A/m]

Electronics Z =
V [V]

I [A]
=

Electric potential

Electric current (∝ velocity)

Fluid mechanics Z =
p

v
=

Acoustic pressure (potential)

Acoustic velocity

Impedance of fluid depends on the velocity.
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Ultrasonic Echo Impedance

Acoustic velocity and Frequency

Acoustic velocity

Medium
Acoustic
velocity
[m/s]

Air 344

Water ≃1,500
Fat ≃ 1,450

internal
organs,
muscle

≃ 1,550

Frequency(at v = 1, 500)
f = v/λ
λ 0.5 mm ∼ 0.1 mm
f 3 MHz ∼ 15 MHz
→ Ultrasonic wave
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Ultrasonic Echo Measurement system

12.3 Measurement system

Similarly to lader, signals are measured in polar coordinate (range and di-
rection).

Range measurement Z1 Z2 Z3

∆t12

∆t23
r

t

1 Emit the pulse modulated acoustic wave

2 Measure time delay of reflected pulse

3 Calculate Z(r)
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Ultrasonic Echo Measurement system

Scanning the direction

Emitting direction can be controlled by phased array antenna:

delay

delay

delay

delay

delay


Non-plane wave can be formed by controlling

the delays.

delay

delay

delay

delay

delay



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